Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
expected3 = pd.DataFrame({
'feat1': [1, 2, 3],
'feat2': [1.0, 2.0, 3.0],
'feat3': [1.5, 2.5, 3.5],
'target': [1, 4, 9]
})
expected4 = pd.DataFrame({
'feat1': [1, 2, 3],
'feat2': [math.e, math.e ** 2, math.e ** 3],
'feat3': [1.0, 2.0, 3.0],
'target': [1, 4, 9]
})
transformer_fn, data, log = custom_transformer(input_df, ["feat2"], ln, is_vectorized=True)
# the transformed input df should contain the square root of the target column
assert expected3.equals(data)
transformer_fn, data, log = custom_transformer(input_df, ["feat3"], floor, is_vectorized=True)
# the transformed input df should contain the squared value of the feat1 column
assert expected4.equals(data)
'target': [1.0, 2.0, 3.0]
})
expected2 = pd.DataFrame({
'feat1': [1, 4, 9],
'feat2': [math.e, math.e ** 2, math.e ** 3],
'feat3': [1.5, 2.5, 3.5],
'target': [1, 4, 9]
})
transformer_fn, data, log = custom_transformer(input_df, ["target"], sqrt)
# the transformed input df should contain the square root of the target column
assert expected.equals(data)
transformer_fn, data, log = custom_transformer(input_df, ["feat1"], lambda x: x ** 2)
# the transformed input df should contain the squared value of the feat1 column
assert expected2.equals(data)
expected3 = pd.DataFrame({
'feat1': [1, 2, 3],
'feat2': [1.0, 2.0, 3.0],
'feat3': [1.5, 2.5, 3.5],
'target': [1, 4, 9]
})
expected4 = pd.DataFrame({
'feat1': [1, 2, 3],
'feat2': [math.e, math.e ** 2, math.e ** 3],
'feat3': [1.0, 2.0, 3.0],
'target': [1, 4, 9]
expected = pd.DataFrame({
'feat1': [1, 2, 3],
'feat2': [math.e, math.e ** 2, math.e ** 3],
'feat3': [1.5, 2.5, 3.5],
'target': [1.0, 2.0, 3.0]
})
expected2 = pd.DataFrame({
'feat1': [1, 4, 9],
'feat2': [math.e, math.e ** 2, math.e ** 3],
'feat3': [1.5, 2.5, 3.5],
'target': [1, 4, 9]
})
transformer_fn, data, log = custom_transformer(input_df, ["target"], sqrt)
# the transformed input df should contain the square root of the target column
assert expected.equals(data)
transformer_fn, data, log = custom_transformer(input_df, ["feat1"], lambda x: x ** 2)
# the transformed input df should contain the squared value of the feat1 column
assert expected2.equals(data)
expected3 = pd.DataFrame({
'feat1': [1, 2, 3],
'feat2': [1.0, 2.0, 3.0],
'feat3': [1.5, 2.5, 3.5],
'target': [1, 4, 9]
})
'target': [1, 4, 9]
})
expected4 = pd.DataFrame({
'feat1': [1, 2, 3],
'feat2': [math.e, math.e ** 2, math.e ** 3],
'feat3': [1.0, 2.0, 3.0],
'target': [1, 4, 9]
})
transformer_fn, data, log = custom_transformer(input_df, ["feat2"], ln, is_vectorized=True)
# the transformed input df should contain the square root of the target column
assert expected3.equals(data)
transformer_fn, data, log = custom_transformer(input_df, ["feat3"], floor, is_vectorized=True)
# the transformed input df should contain the squared value of the feat1 column
assert expected4.equals(data)