How to use the espnet.nets.pytorch_backend.nets_utils.th_accuracy function in espnet

To help you get started, we’ve selected a few espnet examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github espnet / espnet / espnet / nets / pytorch_backend / rnn / decoders.py View on Github external
z_all = torch.stack(z_all, dim=1).view(batch * olength, -1)
        # compute loss
        y_all = self.output(z_all)
        if LooseVersion(torch.__version__) < LooseVersion('1.0'):
            reduction_str = 'elementwise_mean'
        else:
            reduction_str = 'mean'
        self.loss = F.cross_entropy(y_all, ys_out_pad.view(-1),
                                    ignore_index=self.ignore_id,
                                    reduction=reduction_str)
        # compute perplexity
        ppl = math.exp(self.loss.item())
        # -1: eos, which is removed in the loss computation
        self.loss *= (np.mean([len(x) for x in ys_in]) - 1)
        acc = th_accuracy(y_all, ys_out_pad, ignore_label=self.ignore_id)
        logging.info('att loss:' + ''.join(str(self.loss.item()).split('\n')))

        # show predicted character sequence for debug
        if self.verbose > 0 and self.char_list is not None:
            ys_hat = y_all.view(batch, olength, -1)
            ys_true = ys_out_pad
            for (i, y_hat), y_true in zip(enumerate(ys_hat.detach().cpu().numpy()),
                                          ys_true.detach().cpu().numpy()):
                if i == MAX_DECODER_OUTPUT:
                    break
                idx_hat = np.argmax(y_hat[y_true != self.ignore_id], axis=1)
                idx_true = y_true[y_true != self.ignore_id]
                seq_hat = [self.char_list[int(idx)] for idx in idx_hat]
                seq_true = [self.char_list[int(idx)] for idx in idx_true]
                seq_hat = "".join(seq_hat)
                seq_true = "".join(seq_true)
github espnet / espnet / espnet / nets / pytorch_backend / e2e_asr_transformer.py View on Github external
"""
        # 1. forward encoder
        xs_pad = xs_pad[:, :max(ilens)]  # for data parallel
        src_mask = make_non_pad_mask(ilens.tolist()).to(xs_pad.device).unsqueeze(-2)
        hs_pad, hs_mask = self.encoder(xs_pad, src_mask)
        self.hs_pad = hs_pad

        # 2. forward decoder
        ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
        ys_mask = target_mask(ys_in_pad, self.ignore_id)
        pred_pad, pred_mask = self.decoder(ys_in_pad, ys_mask, hs_pad, hs_mask)
        self.pred_pad = pred_pad

        # 3. compute attention loss
        loss_att = self.criterion(pred_pad, ys_out_pad)
        self.acc = th_accuracy(pred_pad.view(-1, self.odim), ys_out_pad,
                               ignore_label=self.ignore_id)

        # TODO(karita) show predicted text
        # TODO(karita) calculate these stats
        cer_ctc = None
        if self.mtlalpha == 0.0:
            loss_ctc = None
        else:
            batch_size = xs_pad.size(0)
            hs_len = hs_mask.view(batch_size, -1).sum(1)
            loss_ctc = self.ctc(hs_pad.view(batch_size, -1, self.adim), hs_len, ys_pad)
            if self.error_calculator is not None:
                ys_hat = self.ctc.argmax(hs_pad.view(batch_size, -1, self.adim)).data
                cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True)

        # 5. compute cer/wer
github espnet / espnet / espnet2 / asr / e2e.py View on Github external
ys_pad: torch.Tensor,
        ys_pad_lens: torch.Tensor,
    ):
        ys_in_pad, ys_out_pad = add_sos_eos(
            ys_pad, self.sos, self.eos, self.ignore_id
        )
        ys_in_lens = ys_pad_lens + 1

        # 1. Forward decoder
        decoder_out, _ = self.decoder(
            encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens
        )

        # 2. Compute attention loss
        loss_att = self.criterion_att(decoder_out, ys_out_pad)
        acc_att = th_accuracy(
            decoder_out.view(-1, self.vocab_size),
            ys_out_pad,
            ignore_label=self.ignore_id,
        )

        # Compute cer/wer using attention-decoder
        if self.error_calculator is None:
            cer_att, wer_att = None, None
        else:
            ys_hat = decoder_out.argmax(dim=-1)
            cer_att, wer_att = self.error_calculator(
                ys_hat.cpu(), ys_pad.cpu()
            )

        return loss_att, acc_att, cer_att, wer_att
github espnet / espnet / espnet / nets / pytorch_backend / e2e_st_transformer.py View on Github external
if self.mt_weight > 0:
            # forward MT encoder
            ilens_mt = torch.sum(ys_pad_src != self.ignore_id, dim=1).cpu().numpy()
            # NOTE: ys_pad_src is padded with -1
            ys_src = [y[y != self.ignore_id] for y in ys_pad_src]  # parse padded ys_src
            ys_zero_pad_src = pad_list(ys_src, self.pad)  # re-pad with zero
            ys_zero_pad_src = ys_zero_pad_src[:, :max(ilens_mt)]  # for data parallel
            src_mask_mt = (~make_pad_mask(ilens_mt.tolist())).to(ys_zero_pad_src.device).unsqueeze(-2)
            # ys_zero_pad_src, ys_pad = self.target_forcing(ys_zero_pad_src, ys_pad)
            hs_pad_mt, hs_mask_mt = self.encoder_mt(ys_zero_pad_src, src_mask_mt)
            # forward MT decoder
            pred_pad_mt, _ = self.decoder(ys_in_pad, ys_mask, hs_pad_mt, hs_mask_mt)
            # compute loss
            loss_mt = self.criterion(pred_pad_mt, ys_out_pad)

        self.acc = th_accuracy(pred_pad.view(-1, self.odim), ys_out_pad,
                               ignore_label=self.ignore_id)
        if pred_pad_asr is not None:
            self.acc_asr = th_accuracy(pred_pad_asr.view(-1, self.odim), ys_out_pad_asr,
                                       ignore_label=self.ignore_id)
        else:
            self.acc_asr = 0.0
        if pred_pad_mt is not None:
            self.acc_mt = th_accuracy(pred_pad_mt.view(-1, self.odim), ys_out_pad,
                                      ignore_label=self.ignore_id)
        else:
            self.acc_mt = 0.0

        # TODO(karita) show predicted text
        # TODO(karita) calculate these stats
        cer_ctc = None
        if self.mtlalpha == 0.0 or self.asr_weight == 0:
github espnet / espnet / espnet / nets / pytorch_backend / e2e_st_transformer.py View on Github external
# ys_zero_pad_src, ys_pad = self.target_forcing(ys_zero_pad_src, ys_pad)
            hs_pad_mt, hs_mask_mt = self.encoder_mt(ys_zero_pad_src, src_mask_mt)
            # forward MT decoder
            pred_pad_mt, _ = self.decoder(ys_in_pad, ys_mask, hs_pad_mt, hs_mask_mt)
            # compute loss
            loss_mt = self.criterion(pred_pad_mt, ys_out_pad)

        self.acc = th_accuracy(pred_pad.view(-1, self.odim), ys_out_pad,
                               ignore_label=self.ignore_id)
        if pred_pad_asr is not None:
            self.acc_asr = th_accuracy(pred_pad_asr.view(-1, self.odim), ys_out_pad_asr,
                                       ignore_label=self.ignore_id)
        else:
            self.acc_asr = 0.0
        if pred_pad_mt is not None:
            self.acc_mt = th_accuracy(pred_pad_mt.view(-1, self.odim), ys_out_pad,
                                      ignore_label=self.ignore_id)
        else:
            self.acc_mt = 0.0

        # TODO(karita) show predicted text
        # TODO(karita) calculate these stats
        cer_ctc = None
        if self.mtlalpha == 0.0 or self.asr_weight == 0:
            loss_ctc = 0.0
        else:
            batch_size = xs_pad.size(0)
            hs_len = hs_mask.view(batch_size, -1).sum(1)
            loss_ctc = self.ctc(hs_pad.view(batch_size, -1, self.adim), hs_len, ys_pad_src)
            if self.error_calculator is not None:
                ys_hat = self.ctc.argmax(hs_pad.view(batch_size, -1, self.adim)).data
                cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad_src.cpu(), is_ctc=True)
github espnet / espnet / espnet / nets / pytorch_backend / e2e_st_transformer.py View on Github external
# NOTE: ys_pad_src is padded with -1
            ys_src = [y[y != self.ignore_id] for y in ys_pad_src]  # parse padded ys_src
            ys_zero_pad_src = pad_list(ys_src, self.pad)  # re-pad with zero
            ys_zero_pad_src = ys_zero_pad_src[:, :max(ilens_mt)]  # for data parallel
            src_mask_mt = (~make_pad_mask(ilens_mt.tolist())).to(ys_zero_pad_src.device).unsqueeze(-2)
            # ys_zero_pad_src, ys_pad = self.target_forcing(ys_zero_pad_src, ys_pad)
            hs_pad_mt, hs_mask_mt = self.encoder_mt(ys_zero_pad_src, src_mask_mt)
            # forward MT decoder
            pred_pad_mt, _ = self.decoder(ys_in_pad, ys_mask, hs_pad_mt, hs_mask_mt)
            # compute loss
            loss_mt = self.criterion(pred_pad_mt, ys_out_pad)

        self.acc = th_accuracy(pred_pad.view(-1, self.odim), ys_out_pad,
                               ignore_label=self.ignore_id)
        if pred_pad_asr is not None:
            self.acc_asr = th_accuracy(pred_pad_asr.view(-1, self.odim), ys_out_pad_asr,
                                       ignore_label=self.ignore_id)
        else:
            self.acc_asr = 0.0
        if pred_pad_mt is not None:
            self.acc_mt = th_accuracy(pred_pad_mt.view(-1, self.odim), ys_out_pad,
                                      ignore_label=self.ignore_id)
        else:
            self.acc_mt = 0.0

        # TODO(karita) show predicted text
        # TODO(karita) calculate these stats
        cer_ctc = None
        if self.mtlalpha == 0.0 or self.asr_weight == 0:
            loss_ctc = 0.0
        else:
            batch_size = xs_pad.size(0)
github espnet / espnet / espnet / nets / pytorch_backend / e2e_mt_transformer.py View on Github external
# 1. forward encoder
        xs_pad = xs_pad[:, :max(ilens)]  # for data parallel
        src_mask = (~make_pad_mask(ilens.tolist())).to(xs_pad.device).unsqueeze(-2)
        xs_pad, ys_pad = self.target_forcing(xs_pad, ys_pad)
        hs_pad, hs_mask = self.encoder(xs_pad, src_mask)
        self.hs_pad = hs_pad

        # 2. forward decoder
        ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
        ys_mask = target_mask(ys_in_pad, self.ignore_id)
        pred_pad, pred_mask = self.decoder(ys_in_pad, ys_mask, hs_pad, hs_mask)
        self.pred_pad = pred_pad

        # 3. compute attention loss
        loss = self.criterion(pred_pad, ys_out_pad)
        self.acc = th_accuracy(pred_pad.view(-1, self.odim), ys_out_pad,
                               ignore_label=self.ignore_id)

        # TODO(karita) show predicted text
        # TODO(karita) calculate these stats

        # 5. compute bleu
        if self.training or self.error_calculator is None:
            bleu = 0.0
        else:
            ys_hat = pred_pad.argmax(dim=-1)
            bleu = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())

        # copyied from e2e_mt
        self.loss = loss

        loss_data = float(self.loss)