How to use the espnet.asr.asr_utils.torch_load function in espnet

To help you get started, we’ve selected a few espnet examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github espnet / espnet / espnet / asr / pytorch_backend / asr_rnnt.py View on Github external
"""

    # read training config
    idim, odim, train_args = get_model_conf(
        model_path, os.path.join(os.path.dirname(model_path), 'model.json'))

    # load trained model parameters
    logging.info('reading model parameters from ' + model_path)
    # To be compatible with v.0.3.0 models
    if hasattr(train_args, "model_module"):
        model_module = train_args.model_module
    else:
        model_module = "espnet.nets.pytorch_backend.e2e_asr:E2E"
    model_class = dynamic_import(model_module)
    model = model_class(idim, odim, train_args)
    torch_load(model_path, model)

    return model, train_args
github espnet / espnet / espnet / st / pytorch_backend / st.py View on Github external
raise ValueError("use '--api v2' option to decode with non-default language model")
        rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(
                len(train_args.char_list), rnnlm_args.layer, rnnlm_args.unit))
        torch_load(args.rnnlm, rnnlm)
        rnnlm.eval()
    else:
        rnnlm = None

    if args.word_rnnlm:
        rnnlm_args = get_model_conf(args.word_rnnlm, args.word_rnnlm_conf)
        word_dict = rnnlm_args.char_list_dict
        char_dict = {x: i for i, x in enumerate(train_args.char_list)}
        word_rnnlm = lm_pytorch.ClassifierWithState(lm_pytorch.RNNLM(
            len(word_dict), rnnlm_args.layer, rnnlm_args.unit))
        torch_load(args.word_rnnlm, word_rnnlm)
        word_rnnlm.eval()

        if rnnlm is not None:
            rnnlm = lm_pytorch.ClassifierWithState(
                extlm_pytorch.MultiLevelLM(word_rnnlm.predictor,
                                           rnnlm.predictor, word_dict, char_dict))
        else:
            rnnlm = lm_pytorch.ClassifierWithState(
                extlm_pytorch.LookAheadWordLM(word_rnnlm.predictor,
                                              word_dict, char_dict))

    # gpu
    if args.ngpu == 1:
        gpu_id = list(range(args.ngpu))
        logging.info('gpu id: ' + str(gpu_id))
        model.cuda()
github espnet / espnet / espnet / st / pytorch_backend / st.py View on Github external
set_deterministic_pytorch(args)
    model, train_args = load_trained_model(args.model)
    # assert isinstance(model, STInterface)
    # TODO(hirofumi0810) fix this for after supporting Transformer
    args.ctc_weight = 0.0
    model.trans_args = args

    # read rnnlm
    if args.rnnlm:
        rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
        if getattr(rnnlm_args, "model_module", "default") != "default":
            raise ValueError("use '--api v2' option to decode with non-default language model")
        rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(
                len(train_args.char_list), rnnlm_args.layer, rnnlm_args.unit))
        torch_load(args.rnnlm, rnnlm)
        rnnlm.eval()
    else:
        rnnlm = None

    if args.word_rnnlm:
        rnnlm_args = get_model_conf(args.word_rnnlm, args.word_rnnlm_conf)
        word_dict = rnnlm_args.char_list_dict
        char_dict = {x: i for i, x in enumerate(train_args.char_list)}
        word_rnnlm = lm_pytorch.ClassifierWithState(lm_pytorch.RNNLM(
            len(word_dict), rnnlm_args.layer, rnnlm_args.unit))
        torch_load(args.word_rnnlm, word_rnnlm)
        word_rnnlm.eval()

        if rnnlm is not None:
            rnnlm = lm_pytorch.ClassifierWithState(
                extlm_pytorch.MultiLevelLM(word_rnnlm.predictor,
github espnet / espnet / espnet / asr / pytorch_backend / asr.py View on Github external
Args:
        args (namespace): The program arguments.
    """
    set_deterministic_pytorch(args)
    # read training config
    idim, odim, train_args = get_model_conf(args.model, args.model_conf)

    # TODO(ruizhili): implement enhance for multi-encoder model
    assert args.num_encs == 1, "number of encoder should be 1 ({} is given)".format(args.num_encs)

    # load trained model parameters
    logging.info('reading model parameters from ' + args.model)
    model_class = dynamic_import(train_args.model_module)
    model = model_class(idim, odim, train_args)
    assert isinstance(model, ASRInterface)
    torch_load(args.model, model)
    model.recog_args = args

    # gpu
    if args.ngpu == 1:
        gpu_id = list(range(args.ngpu))
        logging.info('gpu id: ' + str(gpu_id))
        model.cuda()

    # read json data
    with open(args.recog_json, 'rb') as f:
        js = json.load(f)['utts']

    load_inputs_and_targets = LoadInputsAndTargets(
        mode='asr', load_output=False, sort_in_input_length=False,
        preprocess_conf=None  # Apply pre_process in outer func
    )
github espnet / espnet / espnet / asr / pytorch_backend / asr_init.py View on Github external
Args:
        model_path(str): Path to model.***.best

    """
    idim, odim, train_args = get_model_conf(
        model_path, os.path.join(os.path.dirname(model_path), 'model.json'))

    logging.warning('reading model parameters from ' + model_path)

    if hasattr(train_args, "model_module"):
        model_module = train_args.model_module
    else:
        model_module = "espnet.nets.pytorch_backend.e2e_asr:E2E"
    model_class = dynamic_import(model_module)
    model = model_class(idim, odim, train_args)
    torch_load(model_path, model)

    return model, train_args
github espnet / espnet / espnet / st / pytorch_backend / st.py View on Github external
trainer.extend(extensions.PlotReport(['main/bleu', 'validation/main/bleu'],
                                         'epoch', file_name='cer.png'))

    # Save best models
    trainer.extend(snapshot_object(model, 'model.loss.best'),
                   trigger=training.triggers.MinValueTrigger('validation/main/loss'))
    trainer.extend(snapshot_object(model, 'model.acc.best'),
                   trigger=training.triggers.MaxValueTrigger('validation/main/acc'))

    # save snapshot which contains model and optimizer states
    trainer.extend(torch_snapshot(), trigger=(1, 'epoch'))

    # epsilon decay in the optimizer
    if args.opt == 'adadelta':
        if args.criterion == 'acc':
            trainer.extend(restore_snapshot(model, args.outdir + '/model.acc.best', load_fn=torch_load),
                           trigger=CompareValueTrigger(
                               'validation/main/acc',
                               lambda best_value, current_value: best_value > current_value))
            trainer.extend(adadelta_eps_decay(args.eps_decay),
                           trigger=CompareValueTrigger(
                               'validation/main/acc',
                               lambda best_value, current_value: best_value > current_value))
        elif args.criterion == 'loss':
            trainer.extend(restore_snapshot(model, args.outdir + '/model.loss.best', load_fn=torch_load),
                           trigger=CompareValueTrigger(
                               'validation/main/loss',
                               lambda best_value, current_value: best_value < current_value))
            trainer.extend(adadelta_eps_decay(args.eps_decay),
                           trigger=CompareValueTrigger(
                               'validation/main/loss',
                               lambda best_value, current_value: best_value < current_value))
github espnet / espnet / espnet / asr / pytorch_backend / asr_mix.py View on Github external
'epoch', file_name='cer.png'))

    # Save best models
    trainer.extend(snapshot_object(model, 'model.loss.best'),
                   trigger=training.triggers.MinValueTrigger('validation/main/loss'))
    if mtl_mode != 'ctc':
        trainer.extend(snapshot_object(model, 'model.acc.best'),
                       trigger=training.triggers.MaxValueTrigger('validation/main/acc'))

    # save snapshot which contains model and optimizer states
    trainer.extend(torch_snapshot(), trigger=(1, 'epoch'))

    # epsilon decay in the optimizer
    if args.opt == 'adadelta':
        if args.criterion == 'acc' and mtl_mode != 'ctc':
            trainer.extend(restore_snapshot(model, args.outdir + '/model.acc.best', load_fn=torch_load),
                           trigger=CompareValueTrigger(
                               'validation/main/acc',
                               lambda best_value, current_value: best_value > current_value))
            trainer.extend(adadelta_eps_decay(args.eps_decay),
                           trigger=CompareValueTrigger(
                               'validation/main/acc',
                               lambda best_value, current_value: best_value > current_value))
        elif args.criterion == 'loss':
            trainer.extend(restore_snapshot(model, args.outdir + '/model.loss.best', load_fn=torch_load),
                           trigger=CompareValueTrigger(
                               'validation/main/loss',
                               lambda best_value, current_value: best_value < current_value))
            trainer.extend(adadelta_eps_decay(args.eps_decay),
                           trigger=CompareValueTrigger(
                               'validation/main/loss',
                               lambda best_value, current_value: best_value < current_value))
github espnet / espnet / espnet / nets / pytorch_backend / e2e_tts_fastspeech.py View on Github external
def _load_teacher_model(self, model_path):
        # get teacher model config
        idim, odim, args = get_model_conf(model_path)

        # assert dimension is the same between teacher and studnet
        assert idim == self.idim
        assert odim == self.odim
        assert args.reduction_factor == self.reduction_factor

        # load teacher model
        model = Transformer(idim, odim, args)
        torch_load(model_path, model)

        # freeze teacher model parameters
        for p in model.parameters():
            p.requires_grad = False

        return model
github espnet / espnet / espnet / mt / pytorch_backend / mt.py View on Github external
"""Decode with the given args

    :param Namespace args: The program arguments
    """
    set_deterministic_pytorch(args)
    model, train_args = load_trained_model(args.model)
    assert isinstance(model, MTInterface)
    model.recog_args = args

    # read rnnlm
    if args.rnnlm:
        rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
        rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(
                len(train_args.char_list), rnnlm_args.layer, rnnlm_args.unit))
        torch_load(args.rnnlm, rnnlm)
        rnnlm.eval()
    else:
        rnnlm = None

    # gpu
    if args.ngpu == 1:
        gpu_id = list(range(args.ngpu))
        logging.info('gpu id: ' + str(gpu_id))
        model.cuda()
        if rnnlm:
            rnnlm.cuda()

    # read json data
    with open(args.recog_json, 'rb') as f:
        js = json.load(f)['utts']
    new_js = {}