How to use the elephas.optimizers.Adam function in elephas

To help you get started, we’ve selected a few elephas examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github abhishekakumar / GatorSquad / SparkElephasModel.py View on Github external
modelFeatures = pd.read_csv(filepath_or_buffer=inputCSVFilePath,usecols=SMARTparameters)
    modelLabel = pd.read_csv(filepath_or_buffer=inputCSVFilePath,usecols=['failure'])   #"/hadoop/elephas/Output/ST4000DM000.csv"

    # Removing Not A Number values from the Input Dataframe
    modelFeatures = modelFeatures.fillna(0)
    modelLabel = modelLabel.fillna(0)

    # Obtaining 3D training and testing vectors
    (feature_train, label_train), (feature_test, label_test) = lstm.train_test_split(modelFeatures,modelLabel,trainSize,timeSteps)

    # Condition to check whether the failure cases exists in the data
    if len(feature_train)==0:
        print("DiskModel has no failure eleements. Training of the model cannot proceed!!")
        return
    # Initializing the Adam Optimizer for Elephas
    adam = elephas_optimizers.Adam()
    print "Adam Optimizer initialized"
    #Converting Dataframe to Spark RDD
    rddataset = to_simple_rdd(sc, feature_train, label_train)
    print "Training data converted into Resilient Distributed Dataset"
    #Initializing the SparkModel with Optimizer,Master-Worker Mode and Number of Workers
    spark_model = SparkModel(sc,lstmModel,optimizer=adam ,frequency='epoch', mode='asynchronous', num_workers=2)
    print "Spark Model Initialized"
    #Initial training run of the model
    spark_model.train(rddataset, nb_epoch=10, batch_size=200, verbose=1, validation_split=0)
    # Saving the model
    score = spark_model.evaluate(feature_test, label_test,show_accuracy=True)

    while(score <= 0.5):
        # Training the Input Data set
        spark_model.train(rddataset, nb_epoch=10, batch_size=200, verbose=1, validation_split=0)
        print "LSTM model training done !!"
github maxpumperla / elephas / elephas / optimizers.py View on Github external
return new_weights

    def get_config(self):
        return {"class_name": self.__class__.__name__,
                "lr": float(self.lr),
                "beta_1": self.beta_1,
                "beta_2": self.beta_2,
                "epsilon": self.epsilon}


# aliases
sgd = SGD
rmsprop = RMSprop
adagrad = Adagrad
adadelta = Adadelta
adam = Adam


def serialize(optimizer):
    return serialize_keras_object(optimizer)


def deserialize(config, custom_objects=None):
    """Inverse of the `serialize` function.
    # Arguments
        config: Optimizer configuration dictionary.
        custom_objects: Optional dictionary mapping
            names (strings) to custom objects
            (classes and functions)
            to be considered during deserialization.
    # Returns
        A Keras Optimizer instance.
github maxpumperla / elephas / elephas / optimizers.py View on Github external
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
                 epsilon=1e-8, *args, **kwargs):
        super(Adam, self).__init__(**kwargs)
        self.__dict__.update(locals())
        self.iterations = 0
        self.lr = lr
github maxpumperla / elephas / elephas / optimizers.py View on Github external
"""Inverse of the `serialize` function.
    # Arguments
        config: Optimizer configuration dictionary.
        custom_objects: Optional dictionary mapping
            names (strings) to custom objects
            (classes and functions)
            to be considered during deserialization.
    # Returns
        A Keras Optimizer instance.
    """
    all_classes = {
        'sgd': SGD,
        'rmsprop': RMSprop,
        'adagrad': Adagrad,
        'adadelta': Adadelta,
        'adam': Adam
    }
    # Make deserialization case-insensitive for built-in optimizers.
    if config['class_name'].lower() in all_classes:
        config['class_name'] = config['class_name'].lower()
    return deserialize_keras_object(config,
                                    module_objects=all_classes,
                                    custom_objects=custom_objects,
                                    printable_module_name='optimizer')