How to use the elephas.java.ndarray.ndarray function in elephas

To help you get started, we’ve selected a few elephas examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github maxpumperla / elephas / elephas / utils / rdd_utils.py View on Github external
def to_java_rdd(jsc, features, labels, batch_size):
    """Convert numpy features and labels into a JavaRDD of
    DL4J DataSet type.

    :param jsc: JavaSparkContext from pyjnius
    :param features: numpy array with features
    :param labels: numpy array with labels:
    :return: JavaRDD
    """
    data_sets = java_classes.ArrayList()
    num_batches = int(len(features) / batch_size)
    for i in range(num_batches):
        xi = ndarray(features[:batch_size].copy())
        yi = ndarray(labels[:batch_size].copy())
        data_set = java_classes.DataSet(xi.array, yi.array)
        data_sets.add(data_set)
        features = features[batch_size:]
        labels = labels[batch_size:]

    return jsc.parallelize(data_sets)
github maxpumperla / elephas / elephas / java / ndarray.py View on Github external
def array(*args, **kwargs):
    return ndarray(*args, **kwargs)
github maxpumperla / elephas / elephas / java / ndarray.py View on Github external
if type(key) is slice:
            start = key.start
            stop = key.stop
            step = key.step
            if start is None:
                start = 0
            if stop is None:
                shape = self.array.shape()
                if shape[0] == 1:
                    stop = shape[1]
                else:
                    stop = shape[0]
            if stop - start <= 0:
                return None
            if step is None or step == 1:
                return ndarray(self.array.get(NDArrayIndex.interval(start, stop)))
            else:
                return ndarray(self.array.get(NDArrayIndex.interval(start, step, stop)))
        if type(key) is list:
            raise NotImplemented(
                'Sorry, this type of indexing is not supported yet.')
        if type(key) is tuple:
            key = list(key)
            shape = self.array.shape()
            ndim = len(shape)
            nk = len(key)
            key += [slice(None)] * (ndim - nk)
            args = []
            for i, dim in enumerate(key):
                if type(dim) is int:
                    args.append(NDArrayIndex.point(dim))
                elif type(dim) is slice:
github maxpumperla / elephas / elephas / java / ndarray.py View on Github external
def __add__(self, other):
        other = _indarray(other)
        x, y = broadcast(self.array, other)
        return ndarray(x.add(y))
github maxpumperla / elephas / elephas / utils / rdd_utils.py View on Github external
def to_java_rdd(jsc, features, labels, batch_size):
    """Convert numpy features and labels into a JavaRDD of
    DL4J DataSet type.

    :param jsc: JavaSparkContext from pyjnius
    :param features: numpy array with features
    :param labels: numpy array with labels:
    :return: JavaRDD
    """
    data_sets = java_classes.ArrayList()
    num_batches = int(len(features) / batch_size)
    for i in range(num_batches):
        xi = ndarray(features[:batch_size].copy())
        yi = ndarray(labels[:batch_size].copy())
        data_set = java_classes.DataSet(xi.array, yi.array)
        data_sets.add(data_set)
        features = features[batch_size:]
        labels = labels[batch_size:]

    return jsc.parallelize(data_sets)
github maxpumperla / elephas / elephas / java / ndarray.py View on Github external
def __div__(self, other):
        other = _indarray(other)
        x, y = broadcast(self.array, other)
        return ndarray(x.div(y))
github maxpumperla / elephas / elephas / java / ndarray.py View on Github external
def _indarray(x):
    if type(x) is INDArray:
        return x
    elif type(x) is ndarray:
        return x.array
    elif 'numpy' in str(type(x)):
        return _from_numpy(x)
    elif type(x) in (list, tuple):
        return _from_numpy(np.array(x))
    elif type(x) in (int, float):
        return Nd4j.scalar(x)
    else:
        raise Exception('Data type not understood :' + str(type(x)))
github maxpumperla / elephas / elephas / java / ndarray.py View on Github external
def __mul__(self, other):
        other = _indarray(other)
        x, y = broadcast(self.array, other)
        return ndarray(x.mul(y))
github maxpumperla / elephas / elephas / java / ndarray.py View on Github external
def __sub__(self, other):
        other = _indarray(other)
        x, y = broadcast(self.array, other)
        return ndarray(x.sub(y))