How to use the dace.map function in dace

To help you get started, we’ve selected a few dace examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github spcl / dace / tests / intel_fpga / type_inference.py View on Github external
    @dace.map
    def comp(i: _[0:N]):
        in_x << x[i]
        in_y << y[i]
        out >> y[i]

        # computes y[i]=(int)x[i] + ((int)y[i])*2.1
        var1 = int(in_x)
        var2: int = in_y
        var3 = 2.1
        res = var1 + var3 * var2
        out = res
github spcl / dace / samples / polybench / correlation.py View on Github external
            @dace.map
            def comp_cov_k(k: _[0:N]):
                indi << data[k, i]
                indj << data[k, j]
                cov_ij >> corr(1, lambda x, y: x + y, 0)[i, j]
                cov_ij = (indi * indj)
github spcl / dace / samples / polybench / 3mm.py View on Github external
    @dace.map
    def mult_G(i: _[0:NI], j: _[0:NL], k: _[0:NJ]):
        in_a << E[i, k]
        in_b << F[k, j]
        out >> G(1, lambda x, y: x + y, 0)[i, j]
        out = in_a * in_b
github spcl / dace / samples / polybench / correlation.py View on Github external
        @dace.map
        def symmetrize_col(j: _[i + 1:M]):
            corrin << corr[i, j]
            corrout >> corr[j, i]
            corrout = corrin
github spcl / dace / samples / polybench / bicg.py View on Github external
    @dace.map
    def compute(i: _[0:N], j: _[0:M]):
        inA << A[i, j]
        inr << r[i]
        inp << p[j]
        outs >> s(1, lambda a, b: a + b)[j]
        outq >> q(1, lambda a, b: a + b)[i]
        outs = inr * inA
        outq = inA * inp
github spcl / dace / samples / polybench / jacobi-2d.py View on Github external
        @dace.map
        def b(i: _[1:N - 1], j: _[1:N - 1]):
            a1 << B[i, j]
            a2 << B[i, j - 1]
            a3 << B[i, j + 1]
            a4 << B[i + 1, j]
            a5 << B[i - 1, j]
            b >> A[i, j]

            b = 0.2 * (a1 + a2 + a3 + a4 + a5)
github spcl / dace / samples / polybench / fdtd-2d.py View on Github external
        @dace.map
        def update_ey(i: _[1:NX], j: _[0:NY]):
            eyin << ey[i, j]
            hz1 << hz[i, j]
            hz2 << hz[i - 1, j]
            eyout >> ey[i, j]
            eyout = eyin - datatype(0.5) * (hz1 - hz2)
github spcl / dace / samples / simple / filter.py View on Github external
    @dace.map(_[0:N])
    def filter(i):
        a << A[i]
        r << ratio
        b >> ostream(-1)
        osz >> outsz(-1, lambda x, y: x + y, 0)

        filter = (a > r)

        if filter:
            b = a

        osz = filter
github spcl / dace / samples / polybench / heat-3d.py View on Github external
        @dace.map
        def a(i: _[1:N - 1], j: _[1:N - 1], k: _[1:N - 1]):
            a11 << B[i + 1, j, k]
            a12 << B[i - 1, j, k]
            a21 << B[i, j + 1, k]
            a22 << B[i, j - 1, k]
            a31 << B[i, j, k + 1]
            a32 << B[i, j, k - 1]
            a << B[i, j, k]
            b >> A[i, j, k]

            b = 0.125 * (a11 - datatype(2.0) * a + a12) +\
                0.125 * (a21 - datatype(2.0) * a + a22) +\
                0.125 * (a31 - datatype(2.0) * a + a32) +\
                a
github spcl / dace / samples / polybench / covariance.py View on Github external
        @dace.map
        def symmetrize_col(j: _[i:M]):
            cov_ij << cov[i, j]
            covout >> cov(2)[:, :]
            covout[i, j] = cov_ij / (N - 1)
            covout[j, i] = cov_ij / (N - 1)