How to use the daal.data_management.DataSourceIface.doAllocateNumericTable function in daal

To help you get started, we’ve selected a few daal examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github intel / daal / examples / python / source / outlier_detection / out_detect_bacon_dense_batch.py View on Github external
utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
if utils_folder not in sys.path:
    sys.path.insert(0, utils_folder)
from utils import printNumericTables

DAAL_PREFIX = os.path.join('..', 'data')

# Input data set parameters
datasetFileName = os.path.join(DAAL_PREFIX, 'batch', 'outlierdetection.csv')

if __name__ == "__main__":

    # Initialize FileDataSource to retrieve the test data from a .csv file
    dataSource = FileDataSource(
        datasetFileName,
        DataSourceIface.doAllocateNumericTable,
        DataSourceIface.doDictionaryFromContext
    )

    # Retrieve the data from the input file
    dataSource.loadDataBlock()

    # Create an algorithm to detect outliers using the Bacon method
    algorithm = bacon_outlier_detection.Batch()

    algorithm.input.set(bacon_outlier_detection.data, dataSource.getNumericTable())

    # Compute outliers amd get the computed results
    res = algorithm.compute()

    printNumericTables(
        dataSource.getNumericTable(), res.get(bacon_outlier_detection.weights),
github intel / daal / examples / python / source / math / logistic_dense_batch.py View on Github external
import daal.algorithms.math.logistic as logistic
from daal.data_management import FileDataSource, DataSourceIface

utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
if utils_folder not in sys.path:
    sys.path.insert(0, utils_folder)
from utils import printNumericTable

# Input data set parameters
datasetName = os.path.join('..', 'data', 'batch', 'covcormoments_dense.csv')

if __name__ == "__main__":

    # Retrieve the input data
    dataSource = FileDataSource(datasetName,
                                DataSourceIface.doAllocateNumericTable,
                                DataSourceIface.doDictionaryFromContext)
    dataSource.loadDataBlock()

    # Create an algorithm
    algorithm = logistic.Batch()

    # Set an input object for the algorithm
    algorithm.input.set(logistic.data, dataSource.getNumericTable())

    # Compute Logistic function
    res = algorithm.compute()

    # Print the results of the algorithm
    printNumericTable(res.get(logistic.value), "Logistic result (first 5 rows):", 5)
github intel / daal / examples / python / source / qr / qr_dense_batch.py View on Github external
utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
if utils_folder not in sys.path:
    sys.path.insert(0, utils_folder)
from utils import printNumericTable

DAAL_PREFIX = os.path.join('..', 'data')

# Input data set parameters
datasetFileName = os.path.join(DAAL_PREFIX, 'batch', 'qr.csv')
nRows = 16000

if __name__ == "__main__":

    # Initialize FileDataSource to retrieve input data from .csv file
    dataSource = FileDataSource(
        datasetFileName, DataSourceIface.doAllocateNumericTable,
        DataSourceIface.doDictionaryFromContext
    )

    # Retrieve the data from input file
    dataSource.loadDataBlock(nRows)

    # Create algorithm to compute QR decomposition
    algorithm = qr.Batch()

    algorithm.input.set(qr.data, dataSource.getNumericTable())

    res = algorithm.compute()

    # Print results
    printNumericTable(res.get(qr.matrixQ), "Orthogonal matrix Q:", 10)
    printNumericTable(res.get(qr.matrixR), "Triangular matrix R:")
github intel / daal / examples / python / source / kernel_function / kernel_func_lin_dense_batch.py View on Github external
rightDatasetFileName = os.path.join(DAAL_PREFIX, 'batch', 'kernel_function.csv')

# Kernel algorithm parameters
k = 1.0  # Linear kernel coefficient in the k(X,Y) + b model
b = 0.0  # Linear kernel coefficient in the k(X,Y) + b model

if __name__ == "__main__":

    # Initialize FileDataSource to retrieve the input data from a .csv file
    leftDataSource = FileDataSource(
        leftDatasetFileName, DataSourceIface.doAllocateNumericTable,
        DataSourceIface.doDictionaryFromContext
    )

    rightDataSource = FileDataSource(
        rightDatasetFileName, DataSourceIface.doAllocateNumericTable,
        DataSourceIface.doDictionaryFromContext
    )

    # Retrieve the data from the input file
    leftDataSource.loadDataBlock()
    rightDataSource.loadDataBlock()

    # Create algorithm objects for the kernel algorithm using the default method
    algorithm = kernel_function.linear.Batch()

    # Set the kernel algorithm parameter
    algorithm.parameter.k = k
    algorithm.parameter.b = b
    algorithm.parameter.computationMode = kernel_function.matrixMatrix

    # Set an input data table for the algorithm
github intel / daal / examples / python / source / pca / transform / pca_transform_dense_batch.py View on Github external
import daal.algorithms.pca.transform as pca_transform
from daal.data_management import DataSourceIface, FileDataSource

utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))))
if utils_folder not in sys.path:
    sys.path.insert(0, utils_folder)
from utils import printNumericTable
from daal.data_management import NumericTable
# Input data set parameters
datasetName = os.path.join('..', 'data', 'batch', 'pca_transform.csv')

if __name__ == "__main__":

    # Retrieve the input data
    dataSource = FileDataSource(datasetName,
                                DataSourceIface.doAllocateNumericTable,
                                DataSourceIface.doDictionaryFromContext)
    dataSource.loadDataBlock()
    data = dataSource.getNumericTable()

    # Create an algorithm
    algorithm = pca.Batch(fptype=np.float64,method=pca.svdDense)

    # Set the algorithm input data
    algorithm.input.setDataset(pca.data, data)

    # Set the algorithm normalization parameters (mean and variance)
    # to be exported for transform and whitening parameter (eigenvalue)
    # If whitening is not required eigenvalues should be removed
    # The eigenvalues would be calculated in pca.eigenvalues table of result
    # but would not be passed to dataForTranform collection
    # algorithm.paramter.resultsToCompute = (pca.mean | pca.variance | pca.eigenvalue)
github intel / daal / samples / python / mpi / sources / qr_fast_distributed_mpi.py View on Github external
def computestep1Local():
    global serializedData, dataFromStep1ForStep3

    # Initialize FileDataSource to retrieve the input data from a .csv file
    dataSource = FileDataSource(datasetFileNames[rankId],
                                DataSourceIface.doAllocateNumericTable,
                                DataSourceIface.doDictionaryFromContext)

    # Retrieve the input data
    dataSource.loadDataBlock()

    # Create an algorithm to compute QR decomposition on local nodes
    alg = qr.Distributed(step1Local)

    alg.input.set(qr.data, dataSource.getNumericTable())

    # Compute QR decomposition
    pres = alg.compute()

    dataFromStep1ForStep2 = pres.get(qr.outputOfStep1ForStep2)
    dataFromStep1ForStep3 = pres.get(qr.outputOfStep1ForStep3)
github intel / daal / examples / python / source / quantiles / quantiles_dense_batch.py View on Github external
utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
if utils_folder not in sys.path:
    sys.path.insert(0, utils_folder)
from utils import printNumericTable

DAAL_PREFIX = os.path.join('..', 'data')

# Input data set parameters
dataFileName = os.path.join(DAAL_PREFIX, 'batch', 'quantiles.csv')

if __name__ == "__main__":

    # Initialize FileDataSource to retrieve input data from .csv file
    dataSource = FileDataSource(
        dataFileName,
        DataSourceIface.doAllocateNumericTable,
        DataSourceIface.doDictionaryFromContext
    )

    # Retrieve the data from input file
    dataSource.loadDataBlock()

    # Create algorithm to compute quantiles in batch mode
    algorithm = quantiles.Batch()

    # Set input arguments of the algorithm
    algorithm.input.set(quantiles.data, dataSource.getNumericTable())

    # Get computed quantiles
    res = algorithm.compute()

    # Print result
github intel / daal / examples / python / source / naive_bayes / mn_naive_bayes_csr_online.py View on Github external
def printResults():

    testGroundTruth = FileDataSource(
        testGroundTruthFileName, DataSourceIface.doAllocateNumericTable,
        DataSourceIface.doDictionaryFromContext
    )
    testGroundTruth.loadDataBlock(nTestObservations)

    printNumericTables(
        testGroundTruth.getNumericTable(),
        predictionResult.get(classifier.prediction.prediction),
        "Ground truth", "Classification results",
        "NaiveBayes classification results (first 20 observations):", 20, 15, flt64=False
    )
github intel / daal / examples / python / source / linear_regression / lin_reg_norm_eq_dense_online.py View on Github external
def testModel():
    global trainingResult, predictionResult

    # Initialize FileDataSource to retrieve the input data from a  .csv file
    testDataSource = FileDataSource(
        testDatasetFileName, DataSourceIface.doAllocateNumericTable,
        DataSourceIface.doDictionaryFromContext
    )

    # Create Numeric Tables for testing data and ground truth values
    testData = HomogenNumericTable(nFeatures, 0, NumericTableIface.doNotAllocate)
    testGroundTruth = HomogenNumericTable(nDependentVariables, 0, NumericTableIface.doNotAllocate)
    mergedData = MergedNumericTable(testData, testGroundTruth)

    # Retrieve the data from the input file
    testDataSource.loadDataBlock(mergedData)

    # Create an algorithm object to predict values of multiple linear regression
    algorithm = prediction.Batch()

    # Pass a testing data set and the trained model to the algorithm
    algorithm.input.setTable(prediction.data, testData)
github intel / daal / examples / python / source / naive_bayes / mn_naive_bayes_csr_distr.py View on Github external
def trainModel():
    global trainData, trainingResult

    masterAlgorithm = training.Distributed(step2Master, nClasses, method=training.fastCSR)

    for i in range(nBlocks):
        # Read trainDatasetFileNames and create a numeric table to store the input data
        trainData[i] = createSparseTable(trainDatasetFileNames[i])

        # Initialize FileDataSource to retrieve the input data from a .csv file
        trainLabelsSource = FileDataSource(
            trainGroundTruthFileNames[i], DataSourceIface.doAllocateNumericTable,
            DataSourceIface.doDictionaryFromContext
        )

        # Retrieve the data from an input file
        trainLabelsSource.loadDataBlock(nTrainVectorsInBlock)

        # Create an algorithm object to train the Naive Bayes model on the local-node data
        localAlgorithm = training.Distributed(step1Local, nClasses, method=training.fastCSR)

        # Pass a training data set and dependent values to the algorithm
        localAlgorithm.input.set(classifier.training.data,   trainData[i])
        localAlgorithm.input.set(classifier.training.labels, trainLabelsSource.getNumericTable())

        # Build the Naive Bayes model on the local node
        # Set the local Naive Bayes model as input for the master-node algorithm
        masterAlgorithm.input.add(training.partialModels, localAlgorithm.compute())