How to use the daal.algorithms.classifier function in daal

To help you get started, we’ve selected a few daal examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github intel / daal / examples / python / source / decision_tree / dt_cls_dense_batch.py View on Github external
DataSourceIface.doDictionaryFromContext
    )

    # Create Numeric Tables for pruning data and labels
    pruneData = HomogenNumericTable(nFeatures, 0, NumericTableIface.notAllocate)
    pruneGroundTruth = HomogenNumericTable(1, 0, NumericTableIface.notAllocate)
    pruneMergedData = MergedNumericTable(pruneData, pruneGroundTruth)

    # Retrieve the data from the input file
    pruneDataSource.loadDataBlock(pruneMergedData)

    # Create an algorithm object to train the decision tree classification model
    algorithm = training.Batch(nClasses)

    # Pass the training data set and dependent values to the algorithm
    algorithm.input.set(classifier.training.data, trainData)
    algorithm.input.set(classifier.training.labels, trainGroundTruth)
    algorithm.input.setTable(training.dataForPruning, pruneData)
    algorithm.input.setTable(training.labelsForPruning, pruneGroundTruth)

    # Train the decision tree classification model and retrieve the results of the training algorithm
    trainingResult = algorithm.compute()
    model = trainingResult.get(classifier.training.model)
github intel / daal / examples / python / source / svm / svm_two_class_dense_batch.py View on Github external
def printResults():

    printNumericTables(
        testGroundTruth, predictionResult.get(classifier.prediction.prediction),
        "Ground truth\t", "Classification results",
        "SVM classification results (first 20 observations):", 20, flt64=False
    )
github intel / daal / examples / python / source / gradient_boosted_trees / gbt_cls_dense_batch.py View on Github external
dict = trainData.getDictionary()

    #  Add a feature type to the dictionary
    dict[0].featureType = features.DAAL_CONTINUOUS
    dict[1].featureType = features.DAAL_CONTINUOUS
    dict[2].featureType = features.DAAL_CATEGORICAL

    # Create an algorithm object to train the gradient boosted trees classification model
    algorithm = training.Batch(nClasses)
    algorithm.parameter().maxIterations = maxIterations
    algorithm.parameter().minObservationsInLeafNode = minObservationsInLeafNode
    algorithm.parameter().featuresPerNode = nFeatures

    # Pass the training data set and dependent values to the algorithm
    algorithm.input.set(classifier.training.data, trainData)
    algorithm.input.set(classifier.training.labels, trainGroundTruth)

    # Train the gradient boosted trees classification model and retrieve the results of the training algorithm
    trainingResult = algorithm.compute()
    model = trainingResult.get(classifier.training.model)
github intel / daal / examples / python / source / quality_metrics / svm_two_class_metrics_dense_batch.py View on Github external
# Create Numeric Tables for training data and labels
    trainData = HomogenNumericTable(nFeatures, 0, NumericTableIface.doNotAllocate)
    trainGroundTruth = HomogenNumericTable(1, 0, NumericTableIface.doNotAllocate)
    mergedData = MergedNumericTable(trainData, trainGroundTruth)

    # Retrieve the data from the input file
    trainDataSource.loadDataBlock(mergedData)

    # Create an algorithm object to train the SVM model
    algorithm = svm.training.Batch()

    algorithm.parameter.kernel = kernel
    algorithm.parameter.cacheSize = 600000000

    # Pass a training data set and dependent values to the algorithm
    algorithm.input.set(classifier.training.data, trainData)
    algorithm.input.set(classifier.training.labels, trainGroundTruth)

    # Build the SVM model and get the algorithm results
    trainingResult = algorithm.compute()
github intel / daal / samples / python / spark / sources / spark_NaiveBayesCSR.py View on Github external
algorithm = training.Distributed(step2Master, nClasses, gmethod=training.fastCSR)

    parts_list = partsRDD.collect()

    # Add partial results computed on local nodes to the algorithm on the master node
    for key, value in parts_list:
        deserialized_pres = deserializePartialResult(value, training)
        algorithm.input.add(training.partialModels, deserialized_pres)

    # Train the Naive Bayes model on the master node
    algorithm.compute()

    # Finalize computations and retrieve the training results
    trainingResult = algorithm.finalizeCompute()

    return trainingResult.get(classifier.training.model)
github intel / daal / examples / python / source / quality_metrics / svm_two_class_metrics_dense_batch.py View on Github external
def testModelQuality():
    global predictedLabels, qualityMetricSetResult, groundTruthLabels

    # Retrieve predicted labels
    predictedLabels = predictionResult.get(classifier.prediction.prediction)

    # Create a quality metric set object to compute quality metrics of the SVM algorithm
    qualityMetricSet = svm.quality_metric_set.Batch()

    input = qualityMetricSet.getInputDataCollection().getInput(svm.quality_metric_set.confusionMatrix)

    input.set(binary_confusion_matrix.predictedLabels,   predictedLabels)
    input.set(binary_confusion_matrix.groundTruthLabels, groundTruthLabels)

    # Compute quality metrics and get the quality metrics
    # returns ResultCollection class from svm.quality_metric_set
    qualityMetricSetResult = qualityMetricSet.compute()
github intel / daal / examples / python / source / decision_forest / df_cls_dense_batch.py View on Github external
#  Add a feature type to the dictionary
    dict[0].featureType = features.DAAL_CONTINUOUS
    dict[1].featureType = features.DAAL_CONTINUOUS
    dict[2].featureType = features.DAAL_CATEGORICAL

    # Create an algorithm object to train the decision forest classification model
    algorithm = training.Batch(nClasses)
    algorithm.parameter.nTrees = nTrees
    algorithm.parameter.minObservationsInLeafNode = minObservationsInLeafNode
    algorithm.parameter.featuresPerNode = nFeatures
    algorithm.parameter.varImportance = decision_forest.training.MDI
    algorithm.parameter.resultsToCompute = decision_forest.training.computeOutOfBagError

    # Pass the training data set and dependent values to the algorithm
    algorithm.input.set(classifier.training.data, trainData)
    algorithm.input.set(classifier.training.labels, trainGroundTruth)

    # Train the decision forest classification model and retrieve the results of the training algorithm
    trainingResult = algorithm.compute()
    model = trainingResult.get(classifier.training.model)
    printNumericTable(trainingResult.getTable(training.variableImportance), "Variable importance results: ")
    printNumericTable(trainingResult.getTable(training.outOfBagError), "OOB error: ")
github intel / daal / examples / python / source / gradient_boosted_trees / gbt_cls_dense_batch.py View on Github external
#  Get the dictionary and update it with additional information about data
    dict = trainData.getDictionary()

    #  Add a feature type to the dictionary
    dict[0].featureType = features.DAAL_CONTINUOUS
    dict[1].featureType = features.DAAL_CONTINUOUS
    dict[2].featureType = features.DAAL_CATEGORICAL

    # Create an algorithm object to train the gradient boosted trees classification model
    algorithm = training.Batch(nClasses)
    algorithm.parameter().maxIterations = maxIterations
    algorithm.parameter().minObservationsInLeafNode = minObservationsInLeafNode
    algorithm.parameter().featuresPerNode = nFeatures

    # Pass the training data set and dependent values to the algorithm
    algorithm.input.set(classifier.training.data, trainData)
    algorithm.input.set(classifier.training.labels, trainGroundTruth)

    # Train the gradient boosted trees classification model and retrieve the results of the training algorithm
    trainingResult = algorithm.compute()
    model = trainingResult.get(classifier.training.model)
github intel / daal / examples / python / source / decision_forest / df_cls_traverse_model.py View on Github external
def trainModel():

    # Create Numeric Tables for training data and dependent variables
    trainData, trainDependentVariable = loadData(trainDatasetFileName)

    # Create an algorithm object to train the decision forest classification model
    algorithm = decision_forest.classification.training.Batch(nClasses)

    # Pass a training data set and dependent values to the algorithm
    algorithm.input.set(classifier.training.data, trainData)
    algorithm.input.set(classifier.training.labels, trainDependentVariable)

    algorithm.parameter.nTrees = nTrees
    algorithm.parameter.featuresPerNode = nFeatures
    algorithm.parameter.minObservationsInLeafNode = minObservationsInLeafNode
    algorithm.parameter.maxTreeDepth = maxTreeDepth

    # Build the decision forest classification model and return the result
    return algorithm.compute()
github intel / daal / examples / python / source / logistic_regression / log_reg_dense_batch.py View on Github external
def printResults():

    printNumericTable(predictionResult.get(classifier.prediction.prediction),"Logistic regression prediction results (first 10 rows):",10)
    printNumericTable(testGroundTruth,"Ground truth (first 10 rows):",10)
    printNumericTable(predictionResult.get(logistic_regression.prediction.probabilities),"Logistic regression prediction probabilities (first 10 rows):",10)
    printNumericTable(predictionResult.get(logistic_regression.prediction.logProbabilities),"Logistic regression prediction log probabilities (first 10 rows):",10)