Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def build_model():
model = getattr(builder, Hparams.builder)(
n_speakers=Hparams.n_speakers,
speaker_embed_dim=Hparams.speaker_embed_dim,
n_vocab=frontend.n_vocab,
embed_dim=Hparams.text_embed_dim,
mel_dim=Hparams.num_mels,
linear_dim=Hparams.fft_size // 2 + 1,
r=Hparams.outputs_per_step,
padding_idx=Hparams.padding_idx,
dropout=Hparams.dropout,
kernel_size=Hparams.kernel_size,
encoder_channels=Hparams.encoder_channels,
decoder_channels=Hparams.decoder_channels,
converter_channels=Hparams.converter_channels,
use_memory_mask=Hparams.use_memory_mask,
trainable_positional_encodings=Hparams.trainable_positional_encodings,
force_monotonic_attention=Hparams.force_monotonic_attention,
use_decoder_state_for_postnet_input=Hparams.use_decoder_state_for_postnet_input,
max_positions=Hparams.max_positions,
freeze_embedding=Hparams.freeze_embedding,
window_ahead=Hparams.window_ahead,
window_backward=Hparams.window_backward
)
return model
def build_model():
model = getattr(builder, Hparams.builder)(
n_speakers=Hparams.n_speakers,
speaker_embed_dim=Hparams.speaker_embed_dim,
n_vocab=frontend.n_vocab,
embed_dim=Hparams.text_embed_dim,
mel_dim=Hparams.num_mels,
linear_dim=Hparams.fft_size // 2 + 1,
r=Hparams.outputs_per_step,
padding_idx=Hparams.padding_idx,
dropout=Hparams.dropout,
kernel_size=Hparams.kernel_size,
encoder_channels=Hparams.encoder_channels,
decoder_channels=Hparams.decoder_channels,
converter_channels=Hparams.converter_channels,
use_memory_mask=Hparams.use_memory_mask,
trainable_positional_encodings=Hparams.trainable_positional_encodings,
force_monotonic_attention=Hparams.force_monotonic_attention,
use_decoder_state_for_postnet_input=Hparams.use_decoder_state_for_postnet_input,
max_positions=Hparams.max_positions,
freeze_embedding=Hparams.freeze_embedding,
window_ahead=Hparams.window_ahead,
window_backward=Hparams.window_backward
)
return model
def build_model():
model = getattr(builder, Hparams.builder)(
n_speakers=Hparams.n_speakers,
speaker_embed_dim=Hparams.speaker_embed_dim,
n_vocab=frontend.n_vocab,
embed_dim=Hparams.text_embed_dim,
mel_dim=Hparams.num_mels,
linear_dim=Hparams.fft_size // 2 + 1,
r=Hparams.outputs_per_step,
padding_idx=Hparams.padding_idx,
dropout=Hparams.dropout,
kernel_size=Hparams.kernel_size,
encoder_channels=Hparams.encoder_channels,
decoder_channels=Hparams.decoder_channels,
converter_channels=Hparams.converter_channels,
use_memory_mask=Hparams.use_memory_mask,
trainable_positional_encodings=Hparams.trainable_positional_encodings,
force_monotonic_attention=Hparams.force_monotonic_attention,
use_decoder_state_for_postnet_input=Hparams.use_decoder_state_for_postnet_input,
max_positions=Hparams.max_positions,
freeze_embedding=Hparams.freeze_embedding,
window_ahead=Hparams.window_ahead,
window_backward=Hparams.window_backward
)
return model
def build_model():
model = getattr(builder, Hparams.builder)(
n_speakers=Hparams.n_speakers,
speaker_embed_dim=Hparams.speaker_embed_dim,
n_vocab=frontend.n_vocab,
embed_dim=Hparams.text_embed_dim,
mel_dim=Hparams.num_mels,
linear_dim=Hparams.fft_size // 2 + 1,
r=Hparams.outputs_per_step,
padding_idx=Hparams.padding_idx,
dropout=Hparams.dropout,
kernel_size=Hparams.kernel_size,
encoder_channels=Hparams.encoder_channels,
decoder_channels=Hparams.decoder_channels,
converter_channels=Hparams.converter_channels,
use_memory_mask=Hparams.use_memory_mask,
trainable_positional_encodings=Hparams.trainable_positional_encodings,
force_monotonic_attention=Hparams.force_monotonic_attention,
use_decoder_state_for_postnet_input=Hparams.use_decoder_state_for_postnet_input,
max_positions=Hparams.max_positions,
freeze_embedding=Hparams.freeze_embedding,
window_ahead=Hparams.window_ahead,
def build_model():
model = getattr(builder, Hparams.builder)(
n_speakers=Hparams.n_speakers,
speaker_embed_dim=Hparams.speaker_embed_dim,
n_vocab=frontend.n_vocab,
embed_dim=Hparams.text_embed_dim,
mel_dim=Hparams.num_mels,
linear_dim=Hparams.fft_size // 2 + 1,
r=Hparams.outputs_per_step,
padding_idx=Hparams.padding_idx,
dropout=Hparams.dropout,
kernel_size=Hparams.kernel_size,
encoder_channels=Hparams.encoder_channels,
decoder_channels=Hparams.decoder_channels,
converter_channels=Hparams.converter_channels,
use_memory_mask=Hparams.use_memory_mask,
trainable_positional_encodings=Hparams.trainable_positional_encodings,
force_monotonic_attention=Hparams.force_monotonic_attention,
use_decoder_state_for_postnet_input=Hparams.use_decoder_state_for_postnet_input,
max_positions=Hparams.max_positions,
freeze_embedding=Hparams.freeze_embedding,
window_ahead=Hparams.window_ahead,
window_backward=Hparams.window_backward
)
return model
def build_model():
model = getattr(builder, Hparams.builder)(
n_speakers=Hparams.n_speakers,
speaker_embed_dim=Hparams.speaker_embed_dim,
n_vocab=frontend.n_vocab,
embed_dim=Hparams.text_embed_dim,
mel_dim=Hparams.num_mels,
linear_dim=Hparams.fft_size // 2 + 1,
r=Hparams.outputs_per_step,
padding_idx=Hparams.padding_idx,
dropout=Hparams.dropout,
kernel_size=Hparams.kernel_size,
encoder_channels=Hparams.encoder_channels,
decoder_channels=Hparams.decoder_channels,
converter_channels=Hparams.converter_channels,
use_memory_mask=Hparams.use_memory_mask,
trainable_positional_encodings=Hparams.trainable_positional_encodings,
force_monotonic_attention=Hparams.force_monotonic_attention,
def _lws_processor():
return lws.lws(Hparams.fft_size, Hparams.hop_size, mode="speech")
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.sample_rate = 0
self.hop_length = 0
self.sample_rate = Hparams.sample_rate
self.hop_length = Hparams.hop_size
self.model = self.load_checkpoint()
self.model.to(self.device)
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.sample_rate = 0
self.hop_length = 0
self.sample_rate = Hparams.sample_rate
self.hop_length = Hparams.hop_size
self.model = self.load_checkpoint()
self.model.to(self.device)
def inv_preemphasis(x, coef=Hparams.preemphasis):
"""Inverse operation of pre-emphasis
Args:
x (1d-array): Input signal.
coef (float): Pre-emphasis coefficient.
Returns:
array: Output filtered signal.
See also:
:func:`preemphasis`
"""
b = np.array([1.], x.dtype)
a = np.array([1., -coef], x.dtype)
return signal.lfilter(b, a, x)