Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
"no_handler": []
}
vasp_cmd = env_chk(self["vasp_cmd"], fw_spec)
if isinstance(vasp_cmd, str):
vasp_cmd = os.path.expandvars(vasp_cmd)
vasp_cmd = shlex.split(vasp_cmd)
# initialize variables
job_type = self.get("job_type", "normal")
scratch_dir = env_chk(self.get("scratch_dir"), fw_spec)
gzip_output = self.get("gzip_output", True)
max_errors = self.get("max_errors", CUSTODIAN_MAX_ERRORS)
auto_npar = env_chk(self.get("auto_npar"), fw_spec, strict=False, default=False)
gamma_vasp_cmd = env_chk(self.get("gamma_vasp_cmd"), fw_spec, strict=False, default=None)
if gamma_vasp_cmd:
gamma_vasp_cmd = shlex.split(gamma_vasp_cmd)
# construct jobs
if job_type == "normal":
jobs = [VaspJob(vasp_cmd, auto_npar=auto_npar, gamma_vasp_cmd=gamma_vasp_cmd)]
elif job_type == "double_relaxation_run":
jobs = VaspJob.double_relaxation_run(vasp_cmd, auto_npar=auto_npar,
ediffg=self.get("ediffg"),
half_kpts_first_relax=self.get("half_kpts_first_relax", HALF_KPOINTS_FIRST_RELAX))
elif job_type == "metagga_opt_run":
jobs = VaspJob.metagga_opt_run(vasp_cmd, auto_npar=auto_npar,
ediffg=self.get("ediffg"),
half_kpts_first_relax=self.get("half_kpts_first_relax", HALF_KPOINTS_FIRST_RELAX))
elif job_type == "full_opt_run":
"no_handler": []
}
vasp_cmd = env_chk(self["vasp_cmd"], fw_spec)
if isinstance(vasp_cmd, six.string_types):
vasp_cmd = os.path.expandvars(vasp_cmd)
vasp_cmd = shlex.split(vasp_cmd)
# initialize variables
job_type = self.get("job_type", "normal")
scratch_dir = env_chk(self.get("scratch_dir"), fw_spec)
gzip_output = self.get("gzip_output", True)
max_errors = self.get("max_errors", 5)
auto_npar = env_chk(self.get("auto_npar"), fw_spec, strict=False, default=False)
gamma_vasp_cmd = env_chk(self.get("gamma_vasp_cmd"), fw_spec, strict=False, default=None)
if gamma_vasp_cmd:
gamma_vasp_cmd = shlex.split(gamma_vasp_cmd)
# construct jobs
if job_type == "normal":
jobs = [VaspJob(vasp_cmd, auto_npar=auto_npar, gamma_vasp_cmd=gamma_vasp_cmd)]
elif job_type == "double_relaxation_run":
jobs = VaspJob.double_relaxation_run(vasp_cmd, auto_npar=auto_npar,
ediffg=self.get("ediffg",-0.05),
half_kpts_first_relax=self.get("half_kpts_first_relax",True))
elif job_type == "full_opt_run":
jobs = VaspJob.full_opt_run(vasp_cmd, auto_npar=auto_npar,
ediffg=self.get("ediffg",-0.05),
max_steps=9,
half_kpts_first_relax=self.get("half_kpts_first_relax", True))
elif job_type == "neb":
def run_task(self, fw_spec):
handler_groups = {
"default": [VaspErrorHandler(), MeshSymmetryErrorHandler(), UnconvergedErrorHandler(),
NonConvergingErrorHandler(),PotimErrorHandler(),
PositiveEnergyErrorHandler(), FrozenJobErrorHandler(), StdErrHandler()],
"strict": [VaspErrorHandler(), MeshSymmetryErrorHandler(), UnconvergedErrorHandler(),
NonConvergingErrorHandler(),PotimErrorHandler(),
PositiveEnergyErrorHandler(), FrozenJobErrorHandler(),
StdErrHandler(), AliasingErrorHandler()],
"md": [VaspErrorHandler(), NonConvergingErrorHandler()],
"no_handler": []
}
vasp_cmd = env_chk(self["vasp_cmd"], fw_spec)
if isinstance(vasp_cmd, six.string_types):
vasp_cmd = os.path.expandvars(vasp_cmd)
vasp_cmd = shlex.split(vasp_cmd)
# initialize variables
job_type = self.get("job_type", "normal")
scratch_dir = env_chk(self.get("scratch_dir"), fw_spec)
gzip_output = self.get("gzip_output", True)
max_errors = self.get("max_errors", 5)
auto_npar = env_chk(self.get("auto_npar"), fw_spec, strict=False, default=False)
gamma_vasp_cmd = env_chk(self.get("gamma_vasp_cmd"), fw_spec, strict=False, default=None)
if gamma_vasp_cmd:
gamma_vasp_cmd = shlex.split(gamma_vasp_cmd)
# construct jobs
def run_task(self, fw_spec):
handler_groups = {
"default": [VaspErrorHandler(), MeshSymmetryErrorHandler(), UnconvergedErrorHandler(),
NonConvergingErrorHandler(),PotimErrorHandler(),
PositiveEnergyErrorHandler(), FrozenJobErrorHandler(), StdErrHandler()],
"strict": [VaspErrorHandler(), MeshSymmetryErrorHandler(), UnconvergedErrorHandler(),
NonConvergingErrorHandler(),PotimErrorHandler(),
PositiveEnergyErrorHandler(), FrozenJobErrorHandler(),
StdErrHandler(), AliasingErrorHandler(), DriftErrorHandler()],
"md": [VaspErrorHandler(), NonConvergingErrorHandler()],
"no_handler": []
}
vasp_cmd = env_chk(self["vasp_cmd"], fw_spec)
if isinstance(vasp_cmd, str):
vasp_cmd = os.path.expandvars(vasp_cmd)
vasp_cmd = shlex.split(vasp_cmd)
# initialize variables
job_type = self.get("job_type", "normal")
scratch_dir = env_chk(self.get("scratch_dir"), fw_spec)
gzip_output = self.get("gzip_output", True)
max_errors = self.get("max_errors", CUSTODIAN_MAX_ERRORS)
auto_npar = env_chk(self.get("auto_npar"), fw_spec, strict=False, default=False)
gamma_vasp_cmd = env_chk(self.get("gamma_vasp_cmd"), fw_spec, strict=False, default=None)
if gamma_vasp_cmd:
gamma_vasp_cmd = shlex.split(gamma_vasp_cmd)
# construct jobs
def run_task(self, fw_spec):
# get the directory that contains the dir to parse
calc_dir = os.getcwd()
if "calc_dir" in self:
calc_dir = self["calc_dir"]
elif self.get("calc_loc"):
calc_dir = get_calc_loc(self["calc_loc"], fw_spec["calc_locs"])["path"]
# parse the calc directory
logger.info("PARSING DIRECTORY: {} USING DRONE: {}".format(
calc_dir, self['drone'].__class__.__name__))
# get the database connection
db_file = env_chk(self.get('db_file'), fw_spec)
drone = self['drone'].__class__()
task_doc = drone.assimilate(calc_dir)
if not db_file:
with open("task.json", "w") as f:
f.write(json.dumps(task_doc, default=DATETIME_HANDLER))
else:
mmdb_str = self["mmdb"]
modname, classname = mmdb_str.strip().rsplit(".", 1)
cls_ = load_class(modname, classname)
def add_small_gap_multiply(original_wf, gap_cutoff, density_multiplier, fw_name_constraint=None):
"""
In all FWs with specified name constraints, add a 'small_gap_multiply' parameter that
multiplies the k-mesh density of compounds with gap < gap_cutoff by density multiplier.
Note that this powerup only works on FireWorks with the appropriate WriteVasp* tasks that
accept the small_gap_multiply argument...
:param original_wf:
:param gap_cutoff:
:param density_multiplier:
:param fw_name_constraint:
"""
wf_dict = original_wf.to_dict()
for idx_fw, idx_t in get_fws_and_tasks(original_wf, fw_name_constraint=fw_name_constraint,
task_name_constraint="WriteVasp"):
wf_dict["fws"][idx_fw]["spec"]["_tasks"][idx_t]["small_gap_multiply"] = [gap_cutoff, density_multiplier]
return Workflow.from_dict(wf_dict)
wf_dict = original_wf.to_dict()
if structure is None:
try:
sid = get_fws_and_tasks(original_wf, fw_name_constraint="structure optimization",
task_name_constraint="RunVasp")[0][0]
structure = Structure.from_dict(wf_dict["fws"][sid]["spec"]["_tasks"][1]["vasp_input_set"]["structure"])
except:
raise ValueError("For this workflow, the structure must be provided as an input")
magmom = ""
for i in structure:
magmom += "0 0 0.6 "
#TODO: add saxis as an input parameter with default being (0 0 1)
modify_incar_params = modify_incar_params or {"incar_update": {"LSORBIT": "T", "NBANDS": nbands, "MAGMOM": magmom,
"ISPIN": 1, "LMAXMIX": 4, "ISYM": 0}}
for idx_fw, idx_t in get_fws_and_tasks(original_wf, fw_name_constraint=fw_name_constraint,
task_name_constraint="RunVasp"):
if "structure" not in wf_dict["fws"][idx_fw]["name"] and "static" not in wf_dict["fws"][idx_fw]["name"]:
wf_dict["fws"][idx_fw]["spec"]["_tasks"][idx_t]["vasp_cmd"] = ">>vasp_ncl<<"
wf_dict["fws"][idx_fw]["spec"]["_tasks"].insert(idx_t, ModifyIncar(**modify_incar_params).to_dict())
wf_dict["fws"][idx_fw]["name"] += " soc"
for idx_fw, idx_t in get_fws_and_tasks(original_wf, fw_name_constraint=fw_name_constraint,
task_name_constraint="RunBoltztrap"):
wf_dict["fws"][idx_fw]["name"] += " soc"
return Workflow.from_dict(wf_dict)
example, allows you to modify the INCAR based on the Worker using env_chk or
using hard-coded changes.
Args:
original_wf (Workflow)
modify_incar_params (dict) - dict of parameters for ModifyIncar.
fw_name_constraint (str) - Only apply changes to FWs where fw_name
contains this substring.
Returns:
Workflow
"""
modify_incar_params = modify_incar_params or {
"incar_update": ">>incar_update<<"
}
idx_list = get_fws_and_tasks(
original_wf,
fw_name_constraint=fw_name_constraint,
task_name_constraint="RunVasp",
)
for idx_fw, idx_t in idx_list:
original_wf.fws[idx_fw].tasks.insert(
idx_t, ModifyIncar(**modify_incar_params)
)
return original_wf
def add_stability_check(original_wf, check_stability_params=None, fw_name_constraint=None):
"""
Every FireWork that runs VASP has a CheckStability task afterward. This
allows defusing jobs that are not stable. In practice, you might want
to set the fw_name_constraint so that the stability is only checked at the
beginning of the workflow
Args:
original_wf (Workflow)
check_stability_params (dict): a **kwargs** style dict of params
fw_name_constraint (str) - Only apply changes to FWs where fw_name contains this substring.
"""
check_stability_params = check_stability_params or {}
for idx_fw, idx_t in get_fws_and_tasks(original_wf, fw_name_constraint=fw_name_constraint,
task_name_constraint="DbTask"):
original_wf.fws[idx_fw].spec["_tasks"].append(CheckStability(**check_stability_params).to_dict())
return update_wf(original_wf)
None is passed)
task_name_constraint (str): name of the Firetasks to be tagged (e.g.
None or 'RunVasp')
Returns:
Workflow: workflow with modified queue options
"""
qsettings = {}
if walltime:
qsettings.update({"walltime": walltime})
if time_min:
qsettings.update({"time_min": time_min})
if qos:
qsettings.update({"qos": qos})
idx_list = get_fws_and_tasks(
original_wf,
fw_name_constraint=fw_name_constraint,
task_name_constraint=task_name_constraint,
)
for idx_fw, idx_t in idx_list:
original_wf.fws[idx_fw].spec.update({"_queueadapter": qsettings})
return original_wf