How to use the astromodels.functions.priors.Uniform_prior function in astromodels

To help you get started, we’ve selected a few astromodels examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github threeML / threeML / threeML / plugins / SpectrumLike.py View on Github external
degenerate with the normalization of the model.

        NOTE2: always keep at least one multiplicative constant fixed to one (its default value), when using this
        with other OGIPLike-type detectors

        :param min_value: minimum allowed value (default: 0.8, corresponding to a 20% - effect)
        :param max_value: maximum allowed value (default: 1.2, corresponding to a 20% + effect
        :return:
        """

        self._nuisance_parameter.free = True
        self._nuisance_parameter.bounds = (min_value, max_value)

        # Use a uniform prior by default

        self._nuisance_parameter.set_uninformative_prior(Uniform_prior)
github threeML / threeML / threeML / minimizer / multinest_minimizer.py View on Github external
if min_value > 0:

                orders_of_magnitude_span = math.log10(max_value) - math.log10(min_value)

                if orders_of_magnitude_span > 2:

                    # Use a Log-uniform prior
                    self._param_priors[parameter_name] = Log_uniform_prior(
                        lower_bound=min_value, upper_bound=max_value
                    )

                else:

                    # Use a uniform prior
                    self._param_priors[parameter_name] = Uniform_prior(
                        lower_bound=min_value, upper_bound=max_value
                    )

            else:

                # Can only use a uniform prior
                self._param_priors[parameter_name] = Uniform_prior(
                    lower_bound=min_value, upper_bound=max_value
                )

        def prior(params, ndim, nparams):

            for i, (parameter_name, parameter) in enumerate(self.parameters.items()):

                try: