Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def get_equal_tailed_interval(self,parameter,cl=0.68):
"""
returns the equal tailed interval for the parameter
:param parameter_path: path of the parameter or parameter instance
:param cl: credible interval to obtain
:return: (low bound, high bound)
"""
if isinstance(parameter,Parameter):
path = parameter.path
else:
path = parameter
variates = self.get_variates(path)
return variates.equal_tail_interval(cl)
self._back_count_errors,
) = self._count_errors_initialization()
# Initialize a mask that selects all the data.
# We will initially use the quality mask for the PHA file
# and set any quality greater than 0 to False. We want to save
# the native quality so that we can warn the user if they decide to
# select channels that were flagged as bad.
self._mask = np.asarray(np.ones(self._observed_spectrum.n_channels), np.bool)
# Now create the nuisance parameter for the effective area correction, which is fixed
# by default. This factor multiplies the model so that it can account for calibration uncertainties on the
# global effective area. By default it is limited to stay within 20%
self._nuisance_parameter = Parameter(
"cons_%s" % name,
1.0,
min_value=0.8,
max_value=1.2,
delta=0.05,
free=False,
desc="Effective area correction for %s" % name,
)
nuisance_parameters = collections.OrderedDict()
nuisance_parameters[self._nuisance_parameter.name] = self._nuisance_parameter
# if we have a background model we are going
# to link all those parameters to new nuisance parameters
if self._background_plugin is not None: