Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
reduced_data_path = os.path.join(data_path, 'reduced', 'cifar10_1000')
train_data = numpy.load(os.path.join(reduced_data_path, 'train_X_split_0.npy'))
train_labels = numpy.load(os.path.join(reduced_data_path,
'train_y_split_0.npy'))
test_data = numpy.load('/data/cifar10/test_X.npy')
test_labels = numpy.load('/data/cifar10/test_y.npy')
train_dataset = supervised_dataset.SupervisedDataset(train_data, train_labels)
test_dataset = supervised_dataset.SupervisedDataset(test_data, test_labels)
train_iterator = train_dataset.iterator(
mode='random_uniform', batch_size=128, num_batches=100000)
test_iterator = test_dataset.iterator(mode='random_uniform', batch_size=128,
num_batches=100000)
normer = util.Normer2(filter_size=5, num_channels=3)
augmenter = util.DataAugmenter(2, (32, 32))
print('Training Model')
for x_batch, y_batch in train_iterator:
x_batch = x_batch.transpose(1, 2, 3, 0)
x_batch = augmenter.run(x_batch)
x_batch = normer.run(x_batch)
#y_batch = numpy.int64(numpy.argmax(y_batch, axis=1))
monitor.start()
log_prob, accuracy = model.train(x_batch, y_batch)
monitor.stop(1-accuracy) # monitor takes error instead of accuracy
if monitor.test:
monitor.start()
x_test_batch, y_test_batch = test_iterator.next()
x_test_batch = x_test_batch.transpose(1, 2, 3, 0)
X_train *= 1.0
X_test = numpy.float32(X_test)
X_test /= 255.0
X_test *= 1.0
train_dataset = supervised_dataset.SupervisedDataset(X_train, y_train)
test_dataset = supervised_dataset.SupervisedDataset(X_test, y_test)
train_iterator = train_dataset.iterator(
mode='random_uniform', batch_size=128, num_batches=45000)
test_iterator = test_dataset.iterator(
mode='random_uniform', batch_size=128, num_batches=45000)
# Create object to local contrast normalize a batch.
# Note: Every batch must be normalized before use.
normer = util.Normer2(filter_size=5, num_channels=3)
augmenter = util.DataAugmenter(16, (96, 96), color_on=True)
print('Training Model')
for x_batch, y_batch in train_iterator:
x_batch = x_batch.transpose(1, 2, 3, 0)
x_batch = augmenter.run(x_batch)
x_batch = normer.run(x_batch)
# y_batch = numpy.int64(numpy.argmax(y_batch, axis=1))
monitor.start()
log_prob, accuracy = model.train(x_batch, y_batch-1)
monitor.stop(1-accuracy) # monitor takes error instead of accuracy
if monitor.test:
monitor.start()
x_test_batch, y_test_batch = test_iterator.next()
x_test_batch = x_test_batch.transpose(1, 2, 3, 0)
X_train *= 1.0
X_test = numpy.float32(X_test)
X_test /= 255.0
X_test *= 1.0
train_dataset = supervised_dataset.SupervisedDataset(X_train, y_train)
test_dataset = supervised_dataset.SupervisedDataset(X_test, y_test)
train_iterator = train_dataset.iterator(
mode='random_uniform', batch_size=128, num_batches=45000)
test_iterator = test_dataset.iterator(
mode='random_uniform', batch_size=128, num_batches=45000)
# Create object to local contrast normalize a batch.
# Note: Every batch must be normalized before use.
normer = util.Normer2(filter_size=5, num_channels=3)
augmenter = util.DataAugmenter(16, (96, 96), color_on=True)
print('Training Model')
for x_batch, y_batch in train_iterator:
x_batch = x_batch.transpose(1, 2, 3, 0)
x_batch = augmenter.run(x_batch)
x_batch = normer.run(x_batch)
# y_batch = numpy.int64(numpy.argmax(y_batch, axis=1))
monitor.start()
log_prob, accuracy = model.train(x_batch, y_batch-1)
monitor.stop(1-accuracy) # monitor takes error instead of accuracy
if monitor.test:
monitor.start()
x_test_batch, y_test_batch = test_iterator.next()
x_test_batch = x_test_batch.transpose(1, 2, 3, 0)
reduced_data_path = os.path.join(data_path, 'reduced', 'cifar10_1000')
train_data = numpy.load(os.path.join(reduced_data_path, 'train_X_split_0.npy'))
train_labels = numpy.load(os.path.join(reduced_data_path,
'train_y_split_0.npy'))
test_data = numpy.load('/data/cifar10/test_X.npy')
test_labels = numpy.load('/data/cifar10/test_y.npy')
train_dataset = supervised_dataset.SupervisedDataset(train_data, train_labels)
test_dataset = supervised_dataset.SupervisedDataset(test_data, test_labels)
train_iterator = train_dataset.iterator(
mode='random_uniform', batch_size=128, num_batches=100000)
test_iterator = test_dataset.iterator(mode='random_uniform', batch_size=128,
num_batches=100000)
normer = util.Normer2(filter_size=5, num_channels=3)
print('Training Model')
for x_batch, y_batch in train_iterator:
x_batch = x_batch.transpose(1, 2, 3, 0)
x_batch = normer.run(x_batch)
#y_batch = numpy.int64(numpy.argmax(y_batch, axis=1))
monitor.start()
log_prob, accuracy = model.train(x_batch, y_batch)
monitor.stop(1-accuracy) # monitor takes error instead of accuracy
if monitor.test:
monitor.start()
x_test_batch, y_test_batch = test_iterator.next()
x_test_batch = x_test_batch.transpose(1, 2, 3, 0)
x_test_batch = normer.run(x_test_batch)
#y_test_batch = numpy.int64(numpy.argmax(y_test_batch, axis=1))
reduced_data_path = os.path.join(data_path, 'reduced', 'cifar10_100')
train_data = numpy.load(os.path.join(reduced_data_path, 'train_X_split_0.npy'))
train_labels = numpy.load(os.path.join(reduced_data_path,
'train_y_split_0.npy'))
test_data = numpy.load('/data/cifar10/test_X.npy')
test_labels = numpy.load('/data/cifar10/test_y.npy')
train_dataset = supervised_dataset.SupervisedDataset(train_data, train_labels)
test_dataset = supervised_dataset.SupervisedDataset(test_data, test_labels)
train_iterator = train_dataset.iterator(
mode='random_uniform', batch_size=128, num_batches=100000)
test_iterator = test_dataset.iterator(mode='random_uniform', batch_size=128,
num_batches=100000)
normer = util.Normer2(filter_size=5, num_channels=3)
augmenter = util.DataAugmenter(2, (32, 32), flip=False)
print('Training Model')
for x_batch, y_batch in train_iterator:
x_batch = x_batch.transpose(1, 2, 3, 0)
x_batch = augmenter.run(x_batch)
x_batch = normer.run(x_batch)
#y_batch = numpy.int64(numpy.argmax(y_batch, axis=1))
monitor.start()
log_prob, accuracy = model.train(x_batch, y_batch)
monitor.stop(1-accuracy) # monitor takes error instead of accuracy
if monitor.test:
monitor.start()
x_test_batch, y_test_batch = test_iterator.next()
x_test_batch = x_test_batch.transpose(1, 2, 3, 0)
reduced_data_path = os.path.join(data_path, 'reduced', 'cifar10_100')
train_data = numpy.load(os.path.join(reduced_data_path, 'train_X_split_0.npy'))
train_labels = numpy.load(os.path.join(reduced_data_path,
'train_y_split_0.npy'))
test_data = numpy.load('/data/cifar10/test_X.npy')
test_labels = numpy.load('/data/cifar10/test_y.npy')
train_dataset = supervised_dataset.SupervisedDataset(train_data, train_labels)
test_dataset = supervised_dataset.SupervisedDataset(test_data, test_labels)
train_iterator = train_dataset.iterator(
mode='random_uniform', batch_size=128, num_batches=100000)
test_iterator = test_dataset.iterator(mode='random_uniform', batch_size=128,
num_batches=100000)
normer = util.Normer2(filter_size=5, num_channels=3)
augmenter = util.DataAugmenter(2, (32, 32))
print('Training Model')
for x_batch, y_batch in train_iterator:
x_batch = x_batch.transpose(1, 2, 3, 0)
x_batch = augmenter.run(x_batch)
x_batch = normer.run(x_batch)
#y_batch = numpy.int64(numpy.argmax(y_batch, axis=1))
monitor.start()
log_prob, accuracy = model.train(x_batch, y_batch)
monitor.stop(1-accuracy) # monitor takes error instead of accuracy
if monitor.test:
monitor.start()
x_test_batch, y_test_batch = test_iterator.next()
x_test_batch = x_test_batch.transpose(1, 2, 3, 0)
reduced_data_path = os.path.join(data_path, 'reduced', 'cifar10_1000')
train_data = numpy.load(os.path.join(reduced_data_path, 'train_X_split_0.npy'))
train_labels = numpy.load(os.path.join(reduced_data_path,
'train_y_split_0.npy'))
test_data = numpy.load('/data/cifar10/test_X.npy')
test_labels = numpy.load('/data/cifar10/test_y.npy')
train_dataset = supervised_dataset.SupervisedDataset(train_data, train_labels)
test_dataset = supervised_dataset.SupervisedDataset(test_data, test_labels)
train_iterator = train_dataset.iterator(
mode='random_uniform', batch_size=128, num_batches=100000)
test_iterator = test_dataset.iterator(mode='random_uniform', batch_size=128,
num_batches=100000)
normer = util.Normer2(filter_size=5, num_channels=3)
print('Training Model')
for x_batch, y_batch in train_iterator:
x_batch = x_batch.transpose(1, 2, 3, 0)
x_batch = normer.run(x_batch)
#y_batch = numpy.int64(numpy.argmax(y_batch, axis=1))
monitor.start()
log_prob, accuracy = model.train(x_batch, y_batch)
monitor.stop(1-accuracy) # monitor takes error instead of accuracy
if monitor.test:
monitor.start()
x_test_batch, y_test_batch = test_iterator.next()
x_test_batch = x_test_batch.transpose(1, 2, 3, 0)
x_test_batch = normer.run(x_test_batch)
#y_test_batch = numpy.int64(numpy.argmax(y_test_batch, axis=1))
reduced_data_path = os.path.join(data_path, 'reduced', 'cifar10_500')
train_data = numpy.load(os.path.join(reduced_data_path, 'train_X_split_0.npy'))
train_labels = numpy.load(os.path.join(reduced_data_path,
'train_y_split_0.npy'))
test_data = numpy.load('/data/cifar10/test_X.npy')
test_labels = numpy.load('/data/cifar10/test_y.npy')
train_dataset = supervised_dataset.SupervisedDataset(train_data, train_labels)
test_dataset = supervised_dataset.SupervisedDataset(test_data, test_labels)
train_iterator = train_dataset.iterator(
mode='random_uniform', batch_size=128, num_batches=100000)
test_iterator = test_dataset.iterator(mode='random_uniform', batch_size=128,
num_batches=100000)
normer = util.Normer2(filter_size=5, num_channels=3)
augmenter = util.DataAugmenter(2, (32, 32))
print('Training Model')
for x_batch, y_batch in train_iterator:
x_batch = x_batch.transpose(1, 2, 3, 0)
x_batch = augmenter.run(x_batch)
x_batch = normer.run(x_batch)
#y_batch = numpy.int64(numpy.argmax(y_batch, axis=1))
monitor.start()
log_prob, accuracy = model.train(x_batch, y_batch)
monitor.stop(1-accuracy) # monitor takes error instead of accuracy
if monitor.test:
monitor.start()
x_test_batch, y_test_batch = test_iterator.next()
x_test_batch = x_test_batch.transpose(1, 2, 3, 0)
reduced_data_path = os.path.join(data_path, 'reduced', 'cifar10_1000')
train_data = numpy.load(os.path.join(reduced_data_path, 'train_X_split_0.npy'))
train_labels = numpy.load(os.path.join(reduced_data_path,
'train_y_split_0.npy'))
test_data = numpy.load('/data/cifar10/test_X.npy')
test_labels = numpy.load('/data/cifar10/test_y.npy')
train_dataset = supervised_dataset.SupervisedDataset(train_data, train_labels)
test_dataset = supervised_dataset.SupervisedDataset(test_data, test_labels)
train_iterator = train_dataset.iterator(
mode='random_uniform', batch_size=128, num_batches=100000)
test_iterator = test_dataset.iterator(mode='random_uniform', batch_size=128,
num_batches=100000)
normer = util.Normer2(filter_size=5, num_channels=3)
augmenter = util.DataAugmenter(2, (32, 32))
print('Training Model')
for x_batch, y_batch in train_iterator:
x_batch = x_batch.transpose(1, 2, 3, 0)
x_batch = augmenter.run(x_batch)
x_batch = normer.run(x_batch)
#y_batch = numpy.int64(numpy.argmax(y_batch, axis=1))
monitor.start()
log_prob, accuracy = model.train(x_batch, y_batch)
monitor.stop(1-accuracy) # monitor takes error instead of accuracy
if monitor.test:
monitor.start()
x_test_batch, y_test_batch = test_iterator.next()
x_test_batch = x_test_batch.transpose(1, 2, 3, 0)