Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
nonlinearity=nonlinearity,
pad=2)
pool3 = cc_layers.Pooling2DLayer(conv3, 12, stride=12)
winitD1 = k/numpy.sqrt(numpy.prod(pool3.get_output_shape()))
winitD2 = k/numpy.sqrt(512)
pool3_shuffle = cc_layers.ShuffleC01BToBC01Layer(pool3)
fc4 = layers.DenseLayer(
pool3_shuffle,
n_outputs=512,
weights_std=winitD1,
init_bias_value=1.0,
nonlinearity=layers.rectify,
dropout=0.5)
output = layers.DenseLayer(
fc4,
n_outputs=10,
weights_std=winitD2,
init_bias_value=0.0,
nonlinearity=layers.softmax)
pad=2)
pool2 = cc_layers.Pooling2DLayer(conv2, 2, stride=2)
conv3 = cc_layers.Conv2DNoBiasLayer(
pool2,
n_filters=256,
filter_size=5,
weights_std=winit3,
nonlinearity=nonlinearity,
pad=2)
pool3 = cc_layers.Pooling2DLayer(conv3, 12, stride=12)
winitD1 = k/numpy.sqrt(numpy.prod(pool3.get_output_shape()))
winitD2 = k/numpy.sqrt(512)
pool3_shuffle = cc_layers.ShuffleC01BToBC01Layer(pool3)
fc4 = layers.DenseLayer(
pool3_shuffle,
n_outputs=512,
weights_std=winitD1,
init_bias_value=1.0,
nonlinearity=layers.rectify,
dropout=0.5)
output = layers.DenseLayer(
fc4,
n_outputs=10,
weights_std=winitD2,
init_bias_value=0.0,
nonlinearity=layers.softmax)
pad=2)
pool2 = cc_layers.Pooling2DLayer(conv2, 2, stride=2)
conv3 = cc_layers.Conv2DNoBiasLayer(
pool2,
n_filters=256,
filter_size=5,
weights_std=winit3,
nonlinearity=nonlinearity,
pad=2)
pool3 = cc_layers.Pooling2DLayer(conv3, 12, stride=12)
winitD1 = k/numpy.sqrt(numpy.prod(pool3.get_output_shape()))
winitD2 = k/numpy.sqrt(512)
pool3_shuffle = cc_layers.ShuffleC01BToBC01Layer(pool3)
fc4 = layers.DenseLayer(
pool3_shuffle,
n_outputs=512,
weights_std=winitD1,
init_bias_value=1.0,
nonlinearity=layers.rectify,
dropout=0.5)
output = layers.DenseLayer(
fc4,
n_outputs=10,
weights_std=winitD2,
init_bias_value=0.0,
nonlinearity=layers.softmax)
pad=2)
pool2 = cc_layers.Pooling2DLayer(conv2, 2, stride=2)
conv3 = cc_layers.Conv2DNoBiasLayer(
pool2,
n_filters=256,
filter_size=5,
weights_std=winit3,
nonlinearity=nonlinearity,
pad=2)
pool3 = cc_layers.Pooling2DLayer(conv3, 12, stride=12)
winitD1 = k/numpy.sqrt(numpy.prod(pool3.get_output_shape()))
winitD2 = k/numpy.sqrt(512)
pool3_shuffle = cc_layers.ShuffleC01BToBC01Layer(pool3)
fc4 = layers.DenseLayer(
pool3_shuffle,
n_outputs=512,
weights_std=winitD1,
init_bias_value=1.0,
nonlinearity=layers.rectify,
dropout=0.5)
output = layers.DenseLayer(
fc4,
n_outputs=10,
weights_std=winitD2,
init_bias_value=0.0,
nonlinearity=layers.softmax)
nonlinearity=nonlinearity,
pad=2)
pool2 = cc_layers.Pooling2DLayer(conv2, 2, stride=2)
conv3 = cc_layers.Conv2DNoBiasLayer(
pool2,
n_filters=192,
filter_size=3,
weights_std=winit3,
nonlinearity=nonlinearity,
pad=1)
winitD1 = k/numpy.sqrt(numpy.prod(conv3.get_output_shape()))
winitD2 = k/numpy.sqrt(300)
conv3_shuffle = cc_layers.ShuffleC01BToBC01Layer(conv3)
fc4 = layers.DenseLayer(
conv3_shuffle,
n_outputs=300,
weights_std=winitD1,
init_bias_value=1.0,
nonlinearity=layers.rectify,
dropout=0.0)
output = layers.DenseLayer(
fc4,
n_outputs=10,
weights_std=winitD2,
init_bias_value=0.0,
nonlinearity=layers.softmax)
nonlinearity=nonlinearity,
pad=2)
pool3 = cc_layers.Pooling2DLayer(conv3, 12, stride=12)
winitD1 = k/numpy.sqrt(numpy.prod(pool3.get_output_shape()))
winitD2 = k/numpy.sqrt(512)
pool3_shuffle = cc_layers.ShuffleC01BToBC01Layer(pool3)
fc4 = layers.DenseLayer(
pool3_shuffle,
n_outputs=512,
weights_std=winitD1,
init_bias_value=1.0,
nonlinearity=layers.rectify,
dropout=0.5)
output = layers.DenseLayer(
fc4,
n_outputs=10,
weights_std=winitD2,
init_bias_value=0.0,
nonlinearity=layers.softmax)
pad=2)
pool2 = cc_layers.CudaConvnetPooling2DLayer(conv2, 2, stride=2)
conv3 = cc_layers.CudaConvnetConv2DNoBiasLayer(
pool2,
n_filters=256,
filter_size=5,
weights_std=winit3,
nonlinearity=nonlinearity,
pad=2)
pool3 = cc_layers.CudaConvnetPooling2DLayer(conv3, 12, stride=12)
winitD1 = k/numpy.sqrt(numpy.prod(pool3.get_output_shape()))
winitD2 = k/numpy.sqrt(512)
pool3_shuffle = cc_layers.ShuffleC01BToBC01Layer(pool3)
fc4 = layers.DenseLayer(
pool3_shuffle,
n_outputs = 512,
weights_std=winitD1,
init_bias_value=1.0,
nonlinearity=layers.rectify,
dropout=0.5)
output = layers.DenseLayer(
fc4,
n_outputs=10,
weights_std=winitD2,
init_bias_value=0.0,
nonlinearity=layers.softmax)