How to use the ampligraph.temporal.KnowEvolve function in ampligraph

To help you get started, we’ve selected a few ampligraph examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github Accenture / AmpliGraph / tests / ampligraph / temporal / test_models_temp.py View on Github external
def test_later_training():
    from ampligraph.temporal import KnowEvolve
    #work without the tensorflow seed, means the optimizer is well stored
    path = '/media/sf_Shared_with_VM/savingTest/'
    name = 'model1'
    datas = load_ICEWS_reduced()
    X = datas['train']
    KnE = KnowEvolve(max_iter=1, batch_size=20, lr=0.02, nb_nodes=500, nb_rel=260, dim_embed=10, dim_rel=5)
    KnE.fit(X[:100])
    KnE.save(path, name)
    kne_bis = KnowEvolve(max_iter=2, batch_size=20, lr=0.02, nb_nodes=500, nb_rel=260, dim_embed=10, dim_rel=5)
    kne_bis.restore(path, name)

    #second training, indepedent
    KnE.fit(X[:100])
    kne_bis.fit(X[:100])

    #test
    kne_bis_variables = [kne_bis.model.rEmb, kne_bis.model.RREmb, kne_bis.model.V, kne_bis.model.Whh, kne_bis.model.Wh,
                         kne_bis.model.Wts, kne_bis.model.Wto]
    KnE_variables = [KnE.model.rEmb, KnE.model.RREmb, KnE.model.V, KnE.model.Whh, KnE.model.Wh, KnE.model.Wts,
                     KnE.model.Wto]
    for t1, t2 in list(zip(kne_bis_variables, KnE_variables)):
        print('testing')
        assert (tf.squeeze(tf.reduce_all(tf.equal(t1, t2))))
    assert (tf.reduce_all(tf.equal(kne_bis.predict(X[100:120], X_mask), KnE.predict(X[100:120], X_mask))))
github Accenture / AmpliGraph / tests / ampligraph / temporal / test_models_temp.py View on Github external
def test_save_and_restore():
    from ampligraph.temporal import KnowEvolve
    path = '/media/sf_Shared_with_VM/savingTest/'
    name = 'model1'
    datas = load_ICEWS_reduced()
    X = datas['train']
    KnE = KnowEvolve(max_iter=1, batch_size=20, lr=0.02, nb_nodes=500, nb_rel=260, dim_embed=10, dim_rel=5)
    KnE.fit(X[:100])
    KnE.save(path, name)
    # need to try with differents parameters, like batch_size=25
    kne_bis = KnowEvolve(max_iter=2, batch_size=20, lr=0.02, nb_nodes=500, nb_rel=260, dim_embed=10, dim_rel=5)
    kne_bis.restore(path, name)

    kne_bis_variables = [kne_bis.model.rEmb, kne_bis.model.RREmb, kne_bis.model.V, kne_bis.model.Whh, kne_bis.model.Wh,
                         kne_bis.model.Wts, kne_bis.model.Wto]
    KnE_variables = [KnE.model.rEmb, KnE.model.RREmb, KnE.model.V, KnE.model.Whh, KnE.model.Wh, KnE.model.Wts,
                     KnE.model.Wto]
    for t1, t2 in list(zip(kne_bis_variables, KnE_variables)):
        print('testing')
        assert (tf.squeeze(tf.reduce_all(tf.equal(t1, t2))))
    assert (tf.reduce_all(tf.equal(kne_bis.predict(X[100:120], X_mask), KnE.predict(X[100:120], X_mask))))
github Accenture / AmpliGraph / tests / ampligraph / temporal / test_models_temp.py View on Github external
X = np.array([
        [0, 4, 7, 5.],
        [4, 0, 1, 5.],
        [9, 0, 6, 5.],
        [8, 0, 13, 5.2],
        [6, 1, 9, 5.7],
        [3, 3, 7, 5.8],
        [6, 4, 0, 5.9],
        [6, 2, 1, 6.0],
        [11, 3, 2, 6.26],
        [7, 1, 9, 6.29],
        [7, 1, 5, 6.38],
        [5, 2, 2, 6.4],
        [5, 4, 7, 7.0],
        [4, 3, 3, 7.0], ])
    KnE = KnowEvolve(max_iter=2, batch_size=3, lr=0.1, nb_nodes=20, nb_rel=5, dim_embed=6, dim_rel=3)
    KnE.fit(X)
    tp=KnE.tp
    rp=KnE.rp
    assert(tp[11,:].tolist()==[-24.0, 6.26])
    assert(tp[2,:].tolist()==[6.26, 6.4])
    assert(tp[15, :].tolist()==[-24.0, -24.0])
    assert(rp[5]==4.0)
    assert(rp[15]==-1.0)
github Accenture / AmpliGraph / tests / ampligraph / temporal / test_models_temp.py View on Github external
def test_save_and_restore():
    from ampligraph.temporal import KnowEvolve
    path = '/media/sf_Shared_with_VM/savingTest/'
    name = 'model1'
    datas = load_ICEWS_reduced()
    X = datas['train']
    KnE = KnowEvolve(max_iter=1, batch_size=20, lr=0.02, nb_nodes=500, nb_rel=260, dim_embed=10, dim_rel=5)
    KnE.fit(X[:100])
    KnE.save(path, name)
    # need to try with differents parameters, like batch_size=25
    kne_bis = KnowEvolve(max_iter=2, batch_size=20, lr=0.02, nb_nodes=500, nb_rel=260, dim_embed=10, dim_rel=5)
    kne_bis.restore(path, name)

    kne_bis_variables = [kne_bis.model.rEmb, kne_bis.model.RREmb, kne_bis.model.V, kne_bis.model.Whh, kne_bis.model.Wh,
                         kne_bis.model.Wts, kne_bis.model.Wto]
    KnE_variables = [KnE.model.rEmb, KnE.model.RREmb, KnE.model.V, KnE.model.Whh, KnE.model.Wh, KnE.model.Wts,
                     KnE.model.Wto]
    for t1, t2 in list(zip(kne_bis_variables, KnE_variables)):
        print('testing')
        assert (tf.squeeze(tf.reduce_all(tf.equal(t1, t2))))
    assert (tf.reduce_all(tf.equal(kne_bis.predict(X[100:120], X_mask), KnE.predict(X[100:120], X_mask))))
github Accenture / AmpliGraph / tests / ampligraph / temporal / test_models_temp.py View on Github external
def test_predict_time():
    from ampligraph.temporal import KnowEvolve
    datas = load_ICEWS_reduced()
    X = datas['train']
    KnE = KnowEvolve(max_iter=1, batch_size=20, lr=0.02, nb_nodes=500, nb_rel=260, dim_embed=10, dim_rel=5)
    KnE.fit(X[:500])

    expctd_time = KnE.predict_time(X_bis)
    assert (tf.reduce_all(expctd_time > 0))
github Accenture / AmpliGraph / tests / ampligraph / temporal / test_models_temp.py View on Github external
def test_load_and_fit_ICEWS_reduced():
    from ampligraph.temporal import KnowEvolve
    datas = load_ICEWS_reduced()
    X=datas['train']
    assert not np.any(np.isnan(X))
    KnE = KnowEvolve(max_iter=1, batch_size=20, lr=0.02, nb_nodes=500, nb_rel=260, dim_embed=10, dim_rel=5)
    KnE.fit(X[:1000])
    assert KnE.is_fitted
github Accenture / AmpliGraph / tests / ampligraph / temporal / test_models_temp.py View on Github external
def test_feed_running():
    from ampligraph.temporal import KnowEvolve
    datas = load_ICEWS_reduced()
    X = datas['train']
    KnE = KnowEvolve(max_iter=1, batch_size=20, lr=0.02, nb_nodes=500, nb_rel=260, dim_embed=10, dim_rel=5)
    KnE.fit(X[:500])
    KnE.feed(X_bis)
github Accenture / AmpliGraph / tests / ampligraph / temporal / test_models_temp.py View on Github external
X = np.array([
        [0, 4, 7, 5.257244305824649],
        [4, 0, 1, 5.424818694879746],
        [9, 0, 6, 5.479774175414377],
        [8, 0, 6, 5.528975403788779],
        [6, 1, 9, 5.731247947359487],
        [3, 3, 7, 5.741413035549908],
        [6, 4, 0, 5.749306503402599],
        [6, 2, 1, 5.907582200331214],
        [8, 3, 2, 6.2633789148495005],
        [7, 1, 9, 6.3488699640368225],
        [7, 1, 5, 6.3869577883721975],
        [5, 2, 2, 6.468355387856009],
        [5, 4, 7, 7.074951676048747],
        [4, 3, 3, 7.114139126265265], ])
    KnE = KnowEvolve(max_iter=2, batch_size=3, lr=0.1, nb_nodes=10, nb_rel=5, dim_embed=6, dim_rel=3)
    KnE.fit(X)
    assert KnE.is_fitted
github Accenture / AmpliGraph / tests / ampligraph / temporal / test_models_temp.py View on Github external
def test_later_training():
    from ampligraph.temporal import KnowEvolve
    #work without the tensorflow seed, means the optimizer is well stored
    path = '/media/sf_Shared_with_VM/savingTest/'
    name = 'model1'
    datas = load_ICEWS_reduced()
    X = datas['train']
    KnE = KnowEvolve(max_iter=1, batch_size=20, lr=0.02, nb_nodes=500, nb_rel=260, dim_embed=10, dim_rel=5)
    KnE.fit(X[:100])
    KnE.save(path, name)
    kne_bis = KnowEvolve(max_iter=2, batch_size=20, lr=0.02, nb_nodes=500, nb_rel=260, dim_embed=10, dim_rel=5)
    kne_bis.restore(path, name)

    #second training, indepedent
    KnE.fit(X[:100])
    kne_bis.fit(X[:100])

    #test
    kne_bis_variables = [kne_bis.model.rEmb, kne_bis.model.RREmb, kne_bis.model.V, kne_bis.model.Whh, kne_bis.model.Wh,
                         kne_bis.model.Wts, kne_bis.model.Wto]
    KnE_variables = [KnE.model.rEmb, KnE.model.RREmb, KnE.model.V, KnE.model.Whh, KnE.model.Wh, KnE.model.Wts,
                     KnE.model.Wto]
    for t1, t2 in list(zip(kne_bis_variables, KnE_variables)):
        print('testing')
github Accenture / AmpliGraph / tests / ampligraph / temporal / test_models_temp.py View on Github external
[44.0, 10.0, 1.0, 0.0],  #-1 # with 0 seen
                      [3.0, 6.0, 153.0, 0.0],  #1
                      [242.0, 0.0, 8.0, 24.0], #1
                      [7.0, 1.0, 170.0, 24.0], #-1
                      [56.0, 6.0, 153.0, 0.0], #1
                      [211.0, 6.0, 40.0, 24.0], #-1
                      [60.0, 17.0, 5.0, 0.0], #-1
                      [170.0, 1.0, 7.0, 0.0], #-1 # seen
                      [55.0, 118.0, 43.0, 0.0], #-1
                      [36.0, 6.0, 153.0, 0.0], #-1
                      [40.0, 5.0, 211.0, 24.0], #-1
                      [257.0, 0.0, 66.0, 0.0], #-1
                      [9.0, 8.0, 26.0, 0.0] #-1 # also seen
                      ])
    X_mask = np.array([-1, -1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1])
    KnE = KnowEvolve(max_iter=1, batch_size=20, lr=0.02, nb_nodes=500, nb_rel=260, dim_embed=10, dim_rel=5)
    batches, cutting_in_batches, X_idx=KnE.preprocess_predict(X_bis, X_mask)
    assert(len(batches)==2)
    assert(len(batches[0])==15)
    assert(len(batches[1])==5)
    assert(cutting_in_batches[0]==12)
    assert(cutting_in_batches[1] == 4)
    assert(X_idx[19]==9)