Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_generate_corruptions_for_fit_curropt_side_s():
X = np.array([['a', 'x', 'b'],
['c', 'x', 'd'],
['e', 'x', 'f'],
['b', 'y', 'h'],
['a', 'y', 'l']])
rel_to_idx, ent_to_idx = create_mappings(X)
X = to_idx(X, ent_to_idx=ent_to_idx, rel_to_idx=rel_to_idx)
eta = 1
with tf.Session() as sess:
all_ent = tf.squeeze(tf.constant(list(ent_to_idx.values()), dtype=tf.int32))
dataset = tf.constant(X, dtype=tf.int32)
X_corr = sess.run(generate_corruptions_for_fit(dataset, eta=eta, corrupt_side='s', entities_size=len(X), rnd=0))
print(X_corr)
# these values occur when seed=0
X_corr_exp = [[1, 0, 1],
[3, 0, 3],
[3, 0, 5],
[0, 1, 6],
[3, 1, 7]]
np.testing.assert_array_equal(X_corr, X_corr_exp)
def test_generate_corruptions_for_fit_curropt_side_o():
X = np.array([['a', 'x', 'b'],
['c', 'x', 'd'],
['e', 'x', 'f'],
['b', 'y', 'h'],
['a', 'y', 'l']])
rel_to_idx, ent_to_idx = create_mappings(X)
X = to_idx(X, ent_to_idx=ent_to_idx, rel_to_idx=rel_to_idx)
eta = 1
with tf.Session() as sess:
all_ent = tf.squeeze(tf.constant(list(ent_to_idx.values()), dtype=tf.int32))
dataset = tf.constant(X, dtype=tf.int32)
X_corr = sess.run(generate_corruptions_for_fit(dataset, eta=eta, corrupt_side='o', entities_size=len(X), rnd=0))
print(X_corr)
# these values occur when seed=0
X_corr_exp = [[0, 0, 1],
[2, 0, 3],
[4, 0, 3],
[1, 1, 0],
[0, 1, 3]]
np.testing.assert_array_equal(X_corr, X_corr_exp)
def test_generate_corruptions_for_fit_corrupt_side_so():
X = np.array([['a', 'x', 'b'],
['c', 'x', 'd'],
['e', 'x', 'f'],
['b', 'y', 'h'],
['a', 'y', 'l']])
rel_to_idx, ent_to_idx = create_mappings(X)
X = to_idx(X, ent_to_idx=ent_to_idx, rel_to_idx=rel_to_idx)
eta = 1
with tf.Session() as sess:
all_ent = tf.squeeze(tf.constant(list(ent_to_idx.values()), dtype=tf.int32))
dataset = tf.constant(X, dtype=tf.int32)
X_corr = sess.run(generate_corruptions_for_fit(dataset, eta=eta, corrupt_side='s+o', entities_size=len(X), rnd=0))
print(X_corr)
# these values occur when seed=0
X_corr_exp = [[0, 0, 1],
[2, 0, 3],
[3, 0, 5],
[1, 1, 0],
[0, 1, 3]]
np.testing.assert_array_equal(X_corr, X_corr_exp)
entities_list = tf.squeeze(tf.constant(np.asarray([idx for uri, idx in self.ent_to_idx.items()
if uri in negative_corruption_entities]),
dtype=tf.int32))
elif isinstance(negative_corruption_entities, int):
logger.debug('Using first {} entities for generation of corruptions during \
training'.format(negative_corruption_entities))
entities_size = negative_corruption_entities
loss = 0
corruption_sides = self.embedding_model_params.get('corrupt_sides', DEFAULT_CORRUPT_SIDE_TRAIN)
if not isinstance(corruption_sides, list):
corruption_sides = [corruption_sides]
for side in corruption_sides:
# Generate the corruptions
x_neg_tf = generate_corruptions_for_fit(x_pos_tf,
entities_list=entities_list,
eta=self.eta,
corrupt_side=side,
entities_size=entities_size,
rnd=self.seed)
# compute corruption scores
e_s_neg, e_p_neg, e_o_neg = self._lookup_embeddings(x_neg_tf)
scores_neg = self._fn(e_s_neg, e_p_neg, e_o_neg)
# Apply the loss function
loss += self.loss.apply(scores_pos, scores_neg)
if self.regularizer is not None:
# Apply the regularizer
loss += self.regularizer.apply([self.ent_emb, self.rel_emb])
entities_list = tf.squeeze(tf.constant(np.asarray([idx for uri, idx in self.ent_to_idx.items()
if uri in negative_corruption_entities]),
dtype=tf.int32))
elif isinstance(negative_corruption_entities, int):
logger.debug('Using first {} entities for generation of corruptions during \
training'.format(negative_corruption_entities))
entities_size = negative_corruption_entities
loss = 0
corruption_sides = self.embedding_model_params.get('corrupt_sides', constants.DEFAULT_CORRUPT_SIDE_TRAIN)
if not isinstance(corruption_sides, list):
corruption_sides = [corruption_sides]
for side in corruption_sides:
# Generate the corruptions
x_neg_tf = generate_corruptions_for_fit(x_pos_tf,
entities_list=entities_list,
eta=self.eta,
corrupt_side=side,
entities_size=entities_size,
rnd=self.seed)
# compute corruption scores
e_s_neg, e_p_neg, e_o_neg = self._lookup_embeddings(x_neg_tf)
scores_neg = self._fn(e_s_neg, e_p_neg, e_o_neg)
# Apply the loss function
loss += self.loss.apply(scores_pos, scores_neg)
if self.regularizer is not None:
# Apply the regularizer
loss += self.regularizer.apply([self.ent_emb, self.rel_emb])
dataset_handle.set_data(X_pos, "pos")
gen_fn = partial(dataset_handle.get_next_batch, batches_count=batches_count, dataset_type="pos")
dataset = tf.data.Dataset.from_generator(gen_fn,
output_types=tf.int32,
output_shapes=(None, 3))
dataset = dataset.repeat().prefetch(1)
dataset_iter = tf.data.make_one_shot_iterator(dataset)
x_pos_tf = dataset_iter.get_next()
e_s, e_p, e_o = self._lookup_embeddings(x_pos_tf)
scores_pos = self._fn(e_s, e_p, e_o)
x_neg_tf = generate_corruptions_for_fit(x_pos_tf,
entities_list=None,
eta=1,
corrupt_side='s+o',
entities_size=len(self.ent_to_idx),
rnd=self.seed)
e_s_neg, e_p_neg, e_o_neg = self._lookup_embeddings(x_neg_tf)
scores_neg = self._fn(e_s_neg, e_p_neg, e_o_neg)
return scores_pos, scores_neg, dataset_handle