How to use TPOT - 10 common examples

To help you get started, we’ve selected a few TPOT examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github EpistasisLab / tpot / tests / tpot_tests.py View on Github external
def test_fit_6():
    """Assert that the TPOT fit function provides an optimized pipeline with pandas DataFrame"""
    tpot_obj = TPOTClassifier(
        random_state=42,
        population_size=1,
        offspring_size=2,
        generations=1,
        verbosity=0
    )

    tpot_obj.fit(pd_features, pd_target)

    assert isinstance(pd_features, pd.DataFrame)
    assert isinstance(tpot_obj._optimized_pipeline, creator.Individual)
    assert not (tpot_obj._start_datetime is None)
github EpistasisLab / tpot / tests / tpot_tests.py View on Github external
def test_predict_proba():
    """Assert that the TPOT predict_proba function returns a numpy matrix of shape (num_testing_rows, num_testing_target)."""
    tpot_obj = TPOTClassifier()
    tpot_obj._fit_init()

    pipeline_string = (
        'DecisionTreeClassifier('
        'input_matrix, '
        'DecisionTreeClassifier__criterion=gini, '
        'DecisionTreeClassifier__max_depth=8, '
        'DecisionTreeClassifier__min_samples_leaf=5, '
        'DecisionTreeClassifier__min_samples_split=5)'
    )
    tpot_obj._optimized_pipeline = creator.Individual.from_string(pipeline_string, tpot_obj._pset)
    tpot_obj.fitted_pipeline_ = tpot_obj._toolbox.compile(expr=tpot_obj._optimized_pipeline)
    tpot_obj.fitted_pipeline_.fit(training_features, training_target)

    result = tpot_obj.predict_proba(testing_features)
    num_labels = np.amax(testing_target) + 1
github EpistasisLab / tpot / tests / tpot_tests.py View on Github external
def test_warm_start():
    """Assert that the TPOT warm_start flag stores the pop and pareto_front from the first run."""
    tpot_obj = TPOTClassifier(
        random_state=42,
        population_size=1,
        offspring_size=2,
        generations=1,
        verbosity=0,
        config_dict='TPOT light',
        warm_start=True)
    tpot_obj.fit(pretest_X, pretest_y)

    assert tpot_obj._pop is not None
    assert tpot_obj._pareto_front is not None

    first_pop = tpot_obj._pop
    tpot_obj.random_state = 21
    tpot_obj.fit(pretest_X, pretest_y)
github EpistasisLab / tpot / tests / tpot_tests.py View on Github external
def test_check_dataset_4():
    """Assert that the check_dataset function raise ValueError when sample_weight has a length different length"""
    tpot_obj = TPOTClassifier(
        random_state=42,
        population_size=1,
        offspring_size=2,
        generations=1,
        verbosity=0,
        config_dict='TPOT light'
    )
    tpot_obj._fit_init()
    test_sample_weight = list(range(1, len(training_target)))
    assert_raises(ValueError, tpot_obj._check_dataset, training_features, training_target, test_sample_weight)
github EpistasisLab / tpot / tests / tpot_tests.py View on Github external
def test_sparse_matrix_5():
    """Assert that the TPOT fit function will not raise a ValueError in a sparse matrix with a customized config dictionary."""
    tpot_obj = TPOTClassifier(
        random_state=42,
        population_size=1,
        offspring_size=2,
        generations=1,
        verbosity=0,
        config_dict='tests/test_config_sparse.py'
    )

    tpot_obj.fit(sparse_features, sparse_target)
github EpistasisLab / tpot / tests / tpot_tests.py View on Github external
def test_varOr_3():
    """Assert that varOr() applys reproduction only and does NOT remove CV scores in offsprings."""
    tpot_obj = TPOTClassifier(
        random_state=42,
        verbosity=0,
        config_dict='TPOT light'
    )
    tpot_obj._fit_init()

    tpot_obj._pbar = tqdm(total=1, disable=True)
    pop = tpot_obj._toolbox.population(n=5)
    for ind in pop:
        ind.fitness.values = (2, 1.0)

    offspring = varOr(pop, tpot_obj._toolbox, 5, cxpb=0.0, mutpb=0.0)
    invalid_ind = [ind for ind in offspring if not ind.fitness.valid]

    assert len(offspring) == 5
    assert len(invalid_ind) == 0
github EpistasisLab / tpot / tpot_test_multi_process.py View on Github external
from tpot import TPOTClassifier
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
import time

digits = load_digits()
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target,
                                                    train_size=0.25, test_size=0.75)

tpot = TPOTClassifier(generations=3, population_size=5, offspring_size=10, verbosity=3, n_jobs = 2, random_state = 44)#, max_time_mins=1)
time_start = time.time()
tpot.fit(X_train, y_train)
print(tpot.score(X_test, y_test))
print('\nTime used with num_cpu = 2:',time.time()-time_start)
github EpistasisLab / tpot / tests / tpot_tests.py View on Github external
def test_random_ind_2():
    """Assert that the TPOTRegressor can generate the same pipeline with same random seed."""
    tpot_obj = TPOTRegressor(random_state=43)
    tpot_obj._fit_init()
    pipeline1 = str(tpot_obj._toolbox.individual())
    tpot_obj = TPOTRegressor(random_state=43)
    tpot_obj._fit_init()
    pipeline2 = str(tpot_obj._toolbox.individual())

    assert pipeline1 == pipeline2
github EpistasisLab / tpot / tests / export_tests.py View on Github external
def test_set_param_recursive_2():
    """Assert that set_param_recursive sets \"random_state\" to 42 in nested estimator in SelectFromModel."""
    pipeline_string = (
        'DecisionTreeRegressor(SelectFromModel(input_matrix, '
        'SelectFromModel__ExtraTreesRegressor__max_features=0.05, SelectFromModel__ExtraTreesRegressor__n_estimators=100, '
        'SelectFromModel__threshold=0.05), DecisionTreeRegressor__max_depth=8,'
        'DecisionTreeRegressor__min_samples_leaf=5, DecisionTreeRegressor__min_samples_split=5)'
    )
    tpot_obj = TPOTRegressor()
    tpot_obj._fit_init()
    deap_pipeline = creator.Individual.from_string(pipeline_string, tpot_obj._pset)
    sklearn_pipeline = tpot_obj._toolbox.compile(expr=deap_pipeline)
    set_param_recursive(sklearn_pipeline.steps, 'random_state', 42)

    assert getattr(getattr(sklearn_pipeline.steps[0][1], 'estimator'), 'random_state') == 42
    assert getattr(sklearn_pipeline.steps[1][1], 'random_state') == 42
github EpistasisLab / tpot / tests / tpot_tests.py View on Github external
tpot_obj._fit_init()
    assert tpot_obj._config_dict == tpot_mdr_classifier_config_dict

    tpot_obj = TPOTClassifier(config_dict='TPOT sparse')
    tpot_obj._fit_init()
    assert tpot_obj._config_dict == classifier_config_sparse

    tpot_obj = TPOTRegressor(config_dict='TPOT light')
    tpot_obj._fit_init()
    assert tpot_obj._config_dict == regressor_config_dict_light

    tpot_obj = TPOTRegressor(config_dict='TPOT MDR')
    tpot_obj._fit_init()
    assert tpot_obj._config_dict == tpot_mdr_regressor_config_dict

    tpot_obj = TPOTRegressor(config_dict='TPOT sparse')
    tpot_obj._fit_init()
    assert tpot_obj._config_dict == regressor_config_sparse