How to use ImageHash - 10 common examples

To help you get started, we’ve selected a few ImageHash examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github fffy2366 / image-processing / tests / python / finger_log.py View on Github external
def get_image_hash(self,file):
    	if(not os.path.isfile(file)):
    		print file+"is not a file"
    		# sys.exit(0)
    	try:
    		img = Image.open(file)
	        h = str(imagehash.dhash(img))
	        return h
    	except Exception, e:
    		raise
    	else:
    		pass
    	finally:
    		pass
github mindsdb / mindsdb / mindsdb / libs / phases / stats_generator / stats_generator.py View on Github external
all_possible_values = histogram.keys()

                col_stats = {
                    'data_type': data_type,
                    'data_subtype': curr_data_subtype,
                    "histogram": {
                        "x": list(histogram.keys()),
                        "y": list(histogram.values())
                    }
                    #"percentage_buckets": list(histogram.keys())
                }

            elif curr_data_subtype == DATA_SUBTYPES.IMAGE:
                image_hashes = []
                for img_path in col_data:
                    img_hash = imagehash.phash(Image.open(img_path))
                    seq_hash = []
                    for hash_row in img_hash.hash:
                        seq_hash.extend(hash_row)

                    image_hashes.append(np.array(seq_hash))

                kmeans = MiniBatchKMeans(n_clusters=20, batch_size=round(len(image_hashes)/4))

                kmeans.fit(image_hashes)

                if hmd is not None:
                    hmd['bucketing_algorithms'][col_name] = kmeans

                x = []
                y = [0] * len(kmeans.cluster_centers_)
github Song-Li / dynamic_fingerprinting / research / analyze / paperlib.py View on Github external
path = '/home/sol315/pictures/'
        left_str = c_str.split('=>')[0].split('++')[0]
        right_str = c_str.split('=>')[1].split('++')[0]
        try:
            im_l = Image.open('{}{}.png'.format(path, left_str))
            im_r = Image.open('{}{}.png'.format(path, right_str))
        except:
            return 2
        imgwidth, imgheight = im_l.size
        width = imgwidth / 2
        height = imgheight
        box = (0, 0, width, height)
        a_1 = im_l.crop(box)
        h_l = imagehash.average_hash(im_l)
        a_2 = im_r.crop(box)
        h_r = imagehash.average_hash(im_r)
        if h_l == h_r:
            return 1 
        else:
            return 0
github Song-Li / dynamic_fingerprinting / research / analyze / paperlib.py View on Github external
return 0 for text change, 1 for emoji change
        """
        path = '/home/sol315/pictures/'
        left_str = c_str.split('=>')[0].split('++')[0]
        right_str = c_str.split('=>')[1].split('++')[0]
        try:
            im_l = Image.open('{}{}.png'.format(path, left_str))
            im_r = Image.open('{}{}.png'.format(path, right_str))
        except:
            return 2
        imgwidth, imgheight = im_l.size
        width = imgwidth / 2
        height = imgheight
        box = (0, 0, width, height)
        a_1 = im_l.crop(box)
        h_l = imagehash.average_hash(im_l)
        a_2 = im_r.crop(box)
        h_r = imagehash.average_hash(im_r)
        if h_l == h_r:
            return 1 
        else:
            return 0 
github Ashafix / NeuroMario / GameServer.py View on Github external
if file.endswith(('.png', '.bmp', '.jpg')):
                        movie_name = file[0:file.rfind('.bk2') + 4]
                        # skip everything which is not from a movie file
                        if movie_name == 'new' or not root.endswith('.bk2'):
                            continue
                        file_ending = file.split('.')[-1]
                        index = int(file[file.rfind('_') + 1:file.rfind('.{}'.format(file_ending))])
                        image_hash = self.calculate_img_hash(os.path.join(root, file))
                        self.all_hashes.append(image_hash)
                        self.hashes[str(image_hash)].append(self.pressed_keys[movie_name][index])
                        self.hash_to_file[image_hash].append(file)
        self.printer.log('Time for all hashes: {}'.format(time.time() - start_time))

        # if pickled we need to store all image hashes
        if len(self.all_hashes) == 0:
            self.all_hashes = [imagehash.hex_to_hash(i) for i in self.hashes.keys()]

        # pickle the hashes
        if not pickled or overwrite:
            with open(filename_hashes, 'wb') as f:
                pickle.dump(self.hashes, f, protocol=pickle.HIGHEST_PROTOCOL)
            with open(filename_hash_to_file, 'wb') as f:
                pickle.dump(self.hash_to_file, f, protocol=pickle.HIGHEST_PROTOCOL)
github gil9red / SimplePyScripts / search_for_similar_images__perceptual_hash__phash / main.py View on Github external
"Elapsed time": str(DT.datetime.now() - start_datetime).rsplit('.', maxsplit=1)[0],
            })

            if progress.wasCanceled():
                break

            print(i, '/', number_image_by_hashes, other_file_name)
            if other_file_name == file_name:
                continue

            other_hash_value = hashes[hash_algo]

            # TODO: Monkey patch. https://github.com/JohannesBuchner/imagehash/issues/112
            if hash_algo == 'colorhash':
                from PIL import Image
                other_hash_value = imagehash.colorhash(Image.open(other_file_name))

            score = hash_value - other_hash_value
            print(f'Score: {score:2}. Similar images: {file_name!r} and {other_file_name!r}. '
                  f'{hash_value} vs {other_hash_value}')

            # TODO: выяснить максимальные значения для каждого из алгоритмом
            #           думаю, можно ориентироваться на длину хеша
            #           можно в sql посмотреть или в self.image_by_hashes[file_name]
            if score > max_score:
                continue

            # print(f'Score: {score:2}. Similar images: {file_name!r} and {other_file_name!r}. '
            #       f'{hash_value} vs {other_hash_value}')

            results.append(other_file_name)
github hj3yoo / mtg_card_detector / opencv_dnn.py View on Github external
fetch_data.get_valid_filename(card_info['name']))
            card_img = cv2.imread(img_name)

            # If the image doesn't exist, download it from the URL
            if card_img is None:
                fetch_data.fetch_card_image(card_info,
                                            out_dir='%s/card_img/png/%s' % (Config.data_dir, card_info['set']))
                card_img = cv2.imread(img_name)
            if card_img is None:
                print('WARNING: card %s is not found!' % img_name)

            # Compute value of the card's perceptual hash, then store it to the database
            #img_art = Image.fromarray(card_img[121:580, 63:685])  # For 745*1040 size card image
            img_card = Image.fromarray(card_img)
            for hs in hash_size:
                card_hash = ih.phash(img_card, hash_size=hs)
                card_info['card_hash_%d' % hs] = card_hash
                #art_hash = ih.phash(img_art, hash_size=hs)
                #card_info['art_hash_%d' % hs] = art_hash
            new_pool.loc[0 if new_pool.empty else new_pool.index.max() + 1] = card_info

    if save_to is not None:
        new_pool.to_pickle(save_to)
    return new_pool
github Ashafix / NeuroMario / GameServer.py View on Github external
def predict_finishline(self, image):
        """
        Predicts if the finish line was passed based on the appearance of the ghost
        :param image: PIL Image
        :return: bool, True if finish line was passed, False if not
        """

        img_cropped = image.crop((0, 0, 250, 100))
        img_array = np.array(img_cropped).reshape(1, -1)
        finish_line = bool(self.classifier['lap'].predict(img_array) == [1])
        if finish_line:
            hash_value = str(imagehash.phash(img_cropped, hash_size=5))
            self.printer.log(hash_value)

            if hash_value in self.true_positives and hash_value in self.false_positives:
                raise ValueError("hash {} was found in both false and true positives".format(hash_value))

            direc = os.path.join(os.getcwd(), "classifiers", "round_passed_real_cases")
            if hash_value in self.false_positives:
                self.printer.log('false positive')
                return False
            elif hash_value in self.true_positives:
                self.printer.log('true positive')
                with open("{}/{}.finished".format(direc, hash_value), 'w') as f:
                    f.write('true positive')
                return True
            else:
                image.save("{}/{}.png".format(direc, hash_value))
github mj000001 / Object-Detection-And-Tracking / identify / identify_obj.py View on Github external
def identify_obj(examplar_path, candidate_path, targets):
    # get the closest obj
    examplar = Image.open(examplar_path)
    candidate = Image.open(candidate_path)
    scores = []
    p_examplar = phash(examplar)

    for i, target in enumerate(targets):
        target = tuple(int(x) for x in target)
        img_cropped = candidate.crop(target)
        img_cropped.resize(examplar.size)
        p_img_cropped = phash(img_cropped)
        scores.append(p_img_cropped - p_examplar)

    scores.sort()
    return targets[np.argsort(scores)[0]]
github Toufool / Auto-Split / src / compare.py View on Github external
    @param mask: An image matching the dimensions of the source, but 1 channel grayscale
    @return: The similarity between the hashes of the image as a number 0 to 1.
    """

    # Since imagehash doesn't have any masking itself, bitwise_and will allow us
    # to apply the mask to the source and capture before calculating the pHash for
    # each of the images. As a result of this, this function is not going to be very
    # helpful for large masks as the images when shrinked down to 8x8 will mostly be
    # the same
    source = cv2.bitwise_and(source, source, mask=mask)
    capture = cv2.bitwise_and(capture, capture, mask=mask)
    
    source = Image.fromarray(source)
    capture = Image.fromarray(capture)

    source_hash = imagehash.phash(source)
    capture_hash = imagehash.phash(capture)

    return 1 - ((source_hash - capture_hash)/64.0)

ImageHash

Image Hashing library

BSD-2-Clause
Latest version published 2 years ago

Package Health Score

59 / 100
Full package analysis

Similar packages