How to use the imagehash.average_hash function in ImageHash

To help you get started, we’ve selected a few ImageHash examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github Song-Li / dynamic_fingerprinting / research / analyze / paperlib.py View on Github external
path = '/home/sol315/pictures/'
        left_str = c_str.split('=>')[0].split('++')[0]
        right_str = c_str.split('=>')[1].split('++')[0]
        try:
            im_l = Image.open('{}{}.png'.format(path, left_str))
            im_r = Image.open('{}{}.png'.format(path, right_str))
        except:
            return 2
        imgwidth, imgheight = im_l.size
        width = imgwidth / 2
        height = imgheight
        box = (0, 0, width, height)
        a_1 = im_l.crop(box)
        h_l = imagehash.average_hash(im_l)
        a_2 = im_r.crop(box)
        h_r = imagehash.average_hash(im_r)
        if h_l == h_r:
            return 1 
        else:
            return 0
github Song-Li / dynamic_fingerprinting / research / analyze / paperlib.py View on Github external
return 0 for text change, 1 for emoji change
        """
        path = '/home/sol315/pictures/'
        left_str = c_str.split('=>')[0].split('++')[0]
        right_str = c_str.split('=>')[1].split('++')[0]
        try:
            im_l = Image.open('{}{}.png'.format(path, left_str))
            im_r = Image.open('{}{}.png'.format(path, right_str))
        except:
            return 2
        imgwidth, imgheight = im_l.size
        width = imgwidth / 2
        height = imgheight
        box = (0, 0, width, height)
        a_1 = im_l.crop(box)
        h_l = imagehash.average_hash(im_l)
        a_2 = im_r.crop(box)
        h_r = imagehash.average_hash(im_r)
        if h_l == h_r:
            return 1 
        else:
            return 0 
github universitas / universitas.no / django / apps / photo / file_operations.py View on Github external
def get_imagehashes(fp: Fileish,
                    size=FINGERPRINT_SIZE) -> Dict[str, imagehash.ImageHash]:
    """Calculate perceptual hashes for comparison of identical images"""
    try:
        img = pil_image(fp)
        thumb = img.resize((size, size), PIL.Image.BILINEAR).convert('L')
        return dict(
            ahash=imagehash.average_hash(thumb),
            phash=imagehash.phash(thumb),
            whash=imagehash.whash(thumb),
            dhash=imagehash.dhash(thumb),
        )
    except OSError:  # corrupt image file probably
        return {}
github Ghirensics / ghiro / plugins / processing / perceptualimagehash.py View on Github external
def run(self, task):
        self.task = task
        image = str2image(task.get_file_data)

        # Calculate hash.
        self.results["imghash"]["a_hash"] = str(imagehash.average_hash(image, hash_size=self.HASH_SIZE))
        self.results["imghash"]["p_hash"] = str(imagehash.phash(image, hash_size=self.HASH_SIZE))
        self.results["imghash"]["d_hash"] = str(imagehash.dhash(image, hash_size=self.HASH_SIZE))

        # Get similar images.
        self.results["similar"]["a_hash"] = self.get_similar_images(self.results["imghash"]["a_hash"], imagehash.average_hash)
        self.results["similar"]["p_hash"] = self.get_similar_images(self.results["imghash"]["p_hash"], imagehash.phash)
        self.results["similar"]["d_hash"] = self.get_similar_images(self.results["imghash"]["d_hash"], imagehash.dhash)

        return self.results
github cryptogramfan / Malware-Analysis-Scripts / graph_similar_document_images / graph_similar_document_images.py View on Github external
def detect_images(signatures):
    print('\n[+] Detecting images that meet similarity threshold of signatures (' + str(parsed_args.min_similarity_threshold) + '%)...')
    images = []
    for i in os.listdir(dir_image):
        images.append(i)
    
    with open(csv_file, mode='w') as csv_out:
        csv_writer = csv.writer(csv_out, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
        csv_writer.writerow(['Document_SHA256', 'Average_Hash', 'Signature_Name', 'Similarity'])
 
        for i in images:
            image_path = os.path.join(dir_image, i)
            image_hash = str(imagehash.average_hash(Image.open(image_path)))
           
            for sig_hash, sig_name in signatures.items():
                hamming_distance = distance.hamming(image_hash, sig_hash)
                image_similarity = 100-((hamming_distance/16)*100)

                if image_similarity >= min_similarity_threshold:
                    csv_writer.writerow([i, image_hash, sig_name, image_similarity])
                    print('[+] Document ' + i + ' matched ' + sig_name + ' (' + str('%.0f' % image_similarity) + '% similarity).')
    
    print('[+] Saved results to ' + csv_file + '.')    
    return True
github cryptogramfan / Malware-Analysis-Scripts / graph_similar_document_images / graph_similar_document_images.py View on Github external
def calculate_image_distance():
    print('\n[+] Computing image hash distances...')
    images = []
    for i in os.listdir(dir_image):
        images.append(i)

    images_a = images
    images_b = images
    
    for a in images_a:
        image_a_path = os.path.join(dir_image, a)
        hash_a = imagehash.average_hash(Image.open(image_a_path))
                          
        for b in images_b:
            image_b_path = os.path.join(dir_image, b)
            hash_b = imagehash.average_hash(Image.open(image_b_path))
            
            image_distance = ((hash_a-hash_b)/len(hash_a.hash)**2)*100 # Each image hash is 64 bits long
            image_similarity = 100-image_distance

            if image_similarity >= min_similarity_threshold:
                print('[+] ' + a + ' is ' + str('%.0f' % image_similarity) + '% similar to ' + b + '.')
                network.add_node(a,
                        label='Image_Hash: ' + str(hash_a) + '\n' + 'SHA256_Doc: ' + a,
                        image=image_a_path,
                        type='image',
                        style='filled',
                        fillcolor='white',
                        color='white',
                        fontcolor='black',
                        fontname='Arial',
                        fontsize='20',
github ctxis / CAPE / modules / processing / deduplication.py View on Github external
    def deduplicate_images(self, userpath, hashfunc=imagehash.average_hash):
        """
        Remove duplicate images from a path
        :userpath: path of the image files
        :hashfunc: type of image hashing method
        """

        def is_image(filename):
            img_ext = [".jpg", ".png", ".gif", ".bmp", ".gif"]
            f = filename.lower()
            return any(f.endswith(ext) for ext in img_ext)

        """
        Available hashs functions:
            ahash:      Average hash
            phash:      Perceptual hash
            dhash:      Difference hash
github cryptogramfan / Malware-Analysis-Scripts / graph_similar_document_images / graph_similar_document_images.py View on Github external
def calculate_image_distance():
    print('\n[+] Computing image hash distances...')
    images = []
    for i in os.listdir(dir_image):
        images.append(i)

    images_a = images
    images_b = images
    
    for a in images_a:
        image_a_path = os.path.join(dir_image, a)
        hash_a = imagehash.average_hash(Image.open(image_a_path))
                          
        for b in images_b:
            image_b_path = os.path.join(dir_image, b)
            hash_b = imagehash.average_hash(Image.open(image_b_path))
            
            image_distance = ((hash_a-hash_b)/len(hash_a.hash)**2)*100 # Each image hash is 64 bits long
            image_similarity = 100-image_distance

            if image_similarity >= min_similarity_threshold:
                print('[+] ' + a + ' is ' + str('%.0f' % image_similarity) + '% similar to ' + b + '.')
                network.add_node(a,
                        label='Image_Hash: ' + str(hash_a) + '\n' + 'SHA256_Doc: ' + a,
                        image=image_a_path,
                        type='image',
                        style='filled',
                        fillcolor='white',

ImageHash

Image Hashing library

BSD-2-Clause
Latest version published 2 years ago

Package Health Score

58 / 100
Full package analysis

Similar packages