phpjs@1.3.2

Vulnerabilities

12 via 14 paths

Dependencies

42

Source

npm

Find, fix and prevent vulnerabilities in your code.

Severity
  • 6
  • 2
  • 4
Status
  • 12
  • 0
  • 0

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: fresh
  • Introduced through: send@0.1.0

Detailed paths

  • Introduced through: phpjs@1.3.2 send@0.1.0 fresh@0.1.0
    Remediation: Upgrade to send@0.15.5.

Overview

fresh is HTTP response freshness testing.

Affected versions of this package are vulnerable to Regular expression Denial of Service (ReDoS) attacks. A Regular Expression (/ *, */) was used for parsing HTTP headers and take about 2 seconds matching time for 50k characters.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade fresh to version 0.5.2 or higher.

References

high severity

Arbitrary Code Injection

  • Vulnerable module: growl
  • Introduced through: mocha@1.17.0

Detailed paths

  • Introduced through: phpjs@1.3.2 mocha@1.17.0 growl@1.7.0
    Remediation: Upgrade to mocha@4.0.0.

Overview

growl is a package adding Growl support for Nodejs.

Affected versions of this package are vulnerable to Arbitrary Code Injection due to unsafe use of the eval() function. Node.js provides the eval() function by default, and is used to translate strings into Javascript code. An attacker can craft a malicious payload to inject arbitrary commands.

Remediation

Upgrade growl to version 1.10.0 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: minimatch
  • Introduced through: glob@3.2.1 and mocha@1.17.0

Detailed paths

  • Introduced through: phpjs@1.3.2 glob@3.2.1 minimatch@0.2.14
    Remediation: Upgrade to glob@5.0.15.
  • Introduced through: phpjs@1.3.2 mocha@1.17.0 glob@3.2.3 minimatch@0.2.14
    Remediation: Upgrade to mocha@3.0.0.

Overview

minimatch is a minimal matching utility.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via complicated and illegal regexes.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade minimatch to version 3.0.2 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: minimatch
  • Introduced through: glob@3.2.1 and mocha@1.17.0

Detailed paths

  • Introduced through: phpjs@1.3.2 glob@3.2.1 minimatch@0.2.14
    Remediation: Upgrade to glob@5.0.15.
  • Introduced through: phpjs@1.3.2 mocha@1.17.0 glob@3.2.3 minimatch@0.2.14
    Remediation: Upgrade to mocha@3.0.0.

Overview

minimatch is a minimal matching utility.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS).

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade minimatch to version 3.0.2 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: mocha
  • Introduced through: mocha@1.17.0

Detailed paths

  • Introduced through: phpjs@1.3.2 mocha@1.17.0
    Remediation: Upgrade to mocha@6.0.0.

Overview

mocha is a javascript test framework for node.js & the browser.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). If the stack trace in utils.js begins with a large error message (>= 20k characters), and full-trace is not undisabled, utils.stackTraceFilter() will take exponential time to run.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade mocha to version 6.0.0 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: phpjs
  • Introduced through: phpjs@1.3.2

Detailed paths

  • Introduced through: phpjs@1.3.2

Overview

phpjs is a community built php binding in javascript.

Affected versions of this package are vulnerable to Prototype Pollution via parse_str.

POC:

require('phpjs').parse_str("__proto__[polluted]=true",{});
console.log(polluted) //true

Remediation

There is no fixed version for phpjs.

medium severity

Directory Traversal

  • Vulnerable module: send
  • Introduced through: send@0.1.0

Detailed paths

  • Introduced through: phpjs@1.3.2 send@0.1.0
    Remediation: Upgrade to send@0.8.4.

Overview

send is a library for streaming files from the file system.

Affected versions of this package are vulnerable to Directory-Traversal attacks due to insecure comparison. When relying on the root option to restrict file access a malicious user may escape out of the restricted directory and access files in a similarly named directory. For example, a path like /my-secret is consedered fine for the root /my.

Details

A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.

Directory Traversal vulnerabilities can be generally divided into two types:

  • Information Disclosure: Allows the attacker to gain information about the folder structure or read the contents of sensitive files on the system.

st is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public route.

If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.

curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa

Note %2e is the URL encoded version of . (dot).

  • Writing arbitrary files: Allows the attacker to create or replace existing files. This type of vulnerability is also known as Zip-Slip.

One way to achieve this is by using a malicious zip archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.

The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:

2018-04-15 22:04:29 .....           19           19  good.txt
2018-04-15 22:04:42 .....           20           20  ../../../../../../root/.ssh/authorized_keys

Remediation

Upgrade to a version greater than or equal to 0.8.4.

References

medium severity

Root Path Disclosure

  • Vulnerable module: send
  • Introduced through: send@0.1.0

Detailed paths

  • Introduced through: phpjs@1.3.2 send@0.1.0
    Remediation: Upgrade to send@0.11.1.

Overview

Send is a library for streaming files from the file system as an http response. It supports partial responses (Ranges), conditional-GET negotiation, high test coverage, and granular events which may be leveraged to take appropriate actions in your application or framework.

Affected versions of this package are vulnerable to a Root Path Disclosure.

Remediation

Upgrade send to version 0.11.1 or higher. If a direct dependency update is not possible, use snyk wizard to patch this vulnerability.

References

low severity

Insecure use of /tmp folder

  • Vulnerable module: cli
  • Introduced through: cli@0.4.4-2

Detailed paths

  • Introduced through: phpjs@1.3.2 cli@0.4.4-2
    Remediation: Upgrade to cli@1.0.0.

Overview

cli is an npm package used for rapidly building command line apps.

When used in daemon mode, the library makes insecure use of two files in the /tmp/ folder: /tmp/<app-name>.pid and /tmp/<app-name>.log. These allow an attacker to overwrite files they typically cannot access, but that are accessible by the user running the CLI-using app. This is possible since the /tmp/ folder is (typically) writeable to all system users, and because the names of the files in question are easily predicted by an attacker.

Note that while this is a real vulnerability, it relies on functionality (daemon mode) which is only supported in very old Node versions (0.8 or older), and so is unlikely to be used by most cli users. To avoid any doubt, the fixed version (1.0.0) removes support for this feature entirely.

Details

For example, assume user victim occasionally runs a CLI tool called cli-tool, which uses the cli package. If an attacker gains write access to the /tmp/ folder of that machine (but not the higher permissions victim has), they can create the symbolic link /tmp/cli-tool.pid -> /home/victim/important-file. When victim runs cli-tool, the important-file in victim's root directory will be nullified. If the CLI tool is run as root, the same can be done to nullify /etc/passwd and make the system unbootable.

Note that popular CLI tools have no reason to mask their names, and so attackers can easily guess a long list of tools victims may run by checking the cli package dependents.

Remediation

Upgrade cli to version 1.0.0 or greater, which disables the affected feature.

From the fix release notes:

This feature relies on a beta release (e.g. version 0.5.1) of a Node.js
module on npm--one that was superseded by a stable (e.g. version 1.0)
release published three years ago [2]. Due to a build-time dependency on
the long-since deprecated `node-waf` tool, the module at that version
can only be built for Node.js versions 0.8 and below.

Given this, actual usage of this feature is likely very limited. Remove
it completely so the integrity of this module's core functionality can
be verified.

References

[1] https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=809252 [2] https://github.com/node-js-libs/cli/commit/fd6bc4d2a901aabe0bb6067fbcc14a4fe3faa8b9

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: mime
  • Introduced through: send@0.1.0

Detailed paths

  • Introduced through: phpjs@1.3.2 send@0.1.0 mime@1.2.6
    Remediation: Upgrade to send@0.16.0.

Overview

mime is a comprehensive, compact MIME type module.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It uses regex the following regex /.*[\.\/\\]/ in its lookup, which can cause a slowdown of 2 seconds for 50k characters.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade mime to version 1.4.1, 2.0.3 or higher.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: phpjs
  • Introduced through: phpjs@1.3.2

Detailed paths

  • Introduced through: phpjs@1.3.2

Overview

phpjs is a php.js offers community built php functions in javascript.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) attacks. This can cause an impact of about 10 seconds matching time for data 45 characters long.

Disclosure Timeline

  • Feb 19th, 2018 - Initial Disclosure to package owner
  • Feb 26th, 2018 - Initial Response from package owner
  • Mar 5th, 2018 - Vulnerability published

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

There is no fixed version for phpjs.

low severity

Arbitrary Code Injection

  • Vulnerable module: underscore
  • Introduced through: underscore@1.5.2

Detailed paths

  • Introduced through: phpjs@1.3.2 underscore@1.5.2
    Remediation: Upgrade to underscore@1.12.1.

Overview

underscore is a JavaScript's functional programming helper library.

Affected versions of this package are vulnerable to Arbitrary Code Injection via the template function, particularly when the variable option is taken from _.templateSettings as it is not sanitized.

PoC

const _ = require('underscore');
_.templateSettings.variable = "a = this.process.mainModule.require('child_process').execSync('touch HELLO')";
const t = _.template("")();

Remediation

Upgrade underscore to version 1.13.0-2, 1.12.1 or higher.

References