coggle-issue-importer@0.0.1

Vulnerabilities

19 via 55 paths

Dependencies

222

Source

npm

Find, fix and prevent vulnerabilities in your code.

Severity
  • 7
  • 7
  • 5
Status
  • 19
  • 0
  • 0

high severity

Uninitialized Memory Exposure

  • Vulnerable module: base64-url
  • Introduced through: express@3.21.2

Detailed paths

  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 express-session@1.11.3 uid-safe@2.0.0 base64-url@1.2.1
    Remediation: Upgrade to express@4.0.0.

Overview

base64-url Base64 encode, decode, escape and unescape for URL applications.

Affected versions of this package are vulnerable to Uninitialized Memory Exposure. An attacker may extract sensitive data from uninitialized memory or may cause a DoS by passing in a large number, in setups where typed user input can be passed (e.g. from JSON).

Details

The Buffer class on Node.js is a mutable array of binary data, and can be initialized with a string, array or number.

const buf1 = new Buffer([1,2,3]);
// creates a buffer containing [01, 02, 03]
const buf2 = new Buffer('test');
// creates a buffer containing ASCII bytes [74, 65, 73, 74]
const buf3 = new Buffer(10);
// creates a buffer of length 10

The first two variants simply create a binary representation of the value it received. The last one, however, pre-allocates a buffer of the specified size, making it a useful buffer, especially when reading data from a stream. When using the number constructor of Buffer, it will allocate the memory, but will not fill it with zeros. Instead, the allocated buffer will hold whatever was in memory at the time. If the buffer is not zeroed by using buf.fill(0), it may leak sensitive information like keys, source code, and system info.

Remediation

Upgrade base64-url to version 2.0.0 or higher. Note This is vulnerable only for Node <=4

References

high severity

Remote Memory Exposure

  • Vulnerable module: bl
  • Introduced through: coggle@0.1.8

Detailed paths

  • Introduced through: coggle-issue-importer@0.0.1 coggle@0.1.8 unirest@0.4.2 request@2.51.0 bl@0.9.5

Overview

bl is a library that allows you to collect buffers and access with a standard readable buffer interface.

Affected versions of this package are vulnerable to Remote Memory Exposure. If user input ends up in consume() argument and can become negative, BufferList state can be corrupted, tricking it into exposing uninitialized memory via regular .slice() calls.

PoC by chalker

const { BufferList } = require('bl')
const secret = require('crypto').randomBytes(256)
for (let i = 0; i < 1e6; i++) {
  const clone = Buffer.from(secret)
  const bl = new BufferList()
  bl.append(Buffer.from('a'))
  bl.consume(-1024)
  const buf = bl.slice(1)
  if (buf.indexOf(clone) !== -1) {
    console.error(`Match (at ${i})`, buf)
  }
}

Remediation

Upgrade bl to version 2.2.1, 3.0.1, 4.0.3, 1.2.3 or higher.

References

high severity

Sandbox Bypass

  • Vulnerable module: constantinople
  • Introduced through: jade@1.11.0

Detailed paths

  • Introduced through: coggle-issue-importer@0.0.1 jade@1.11.0 constantinople@3.0.2

Overview

constantinople determines whether a JavaScript expression evaluates to a constant (using acorn).

Affected versions of this package are vulnerable to a sandbox bypass which can lead to arbitrary code execution.

Remediation

Upgrade constantinople to version 3.1.1 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: fresh
  • Introduced through: express@3.21.2

Detailed paths

  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 fresh@0.3.0
    Remediation: Upgrade to express@4.15.5.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 fresh@0.3.0
    Remediation: Upgrade to express@4.0.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 send@0.13.0 fresh@0.3.0
    Remediation: Upgrade to express@4.15.5.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 serve-favicon@2.3.2 fresh@0.3.0
    Remediation: Upgrade to express@4.0.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 serve-static@1.10.3 send@0.13.2 fresh@0.3.0
    Remediation: Upgrade to express@4.0.0.

Overview

fresh is HTTP response freshness testing.

Affected versions of this package are vulnerable to Regular expression Denial of Service (ReDoS) attacks. A Regular Expression (/ *, */) was used for parsing HTTP headers and take about 2 seconds matching time for 50k characters.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade fresh to version 0.5.2 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: negotiator
  • Introduced through: express@3.21.2

Detailed paths

  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 compression@1.5.2 accepts@1.2.13 negotiator@0.5.3
    Remediation: Upgrade to express@4.0.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 serve-index@1.7.3 accepts@1.2.13 negotiator@0.5.3
    Remediation: Upgrade to express@4.0.0.

Overview

negotiator is an HTTP content negotiator for Node.js.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when parsing Accept-Language http header.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade negotiator to version 0.6.1 or higher.

References

high severity

Prototype Override Protection Bypass

  • Vulnerable module: qs
  • Introduced through: coggle@0.1.8 and express@3.21.2

Detailed paths

  • Introduced through: coggle-issue-importer@0.0.1 coggle@0.1.8 unirest@0.4.2 request@2.51.0 qs@2.3.3
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 qs@4.0.0
    Remediation: Upgrade to express@4.0.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 body-parser@1.13.3 qs@4.0.0
    Remediation: Upgrade to express@4.0.0.

Overview

qs is a querystring parser that supports nesting and arrays, with a depth limit.

Affected versions of this package are vulnerable to Prototype Override Protection Bypass. By default qs protects against attacks that attempt to overwrite an object's existing prototype properties, such as toString(), hasOwnProperty(),etc.

From qs documentation:

By default parameters that would overwrite properties on the object prototype are ignored, if you wish to keep the data from those fields either use plainObjects as mentioned above, or set allowPrototypes to true which will allow user input to overwrite those properties. WARNING It is generally a bad idea to enable this option as it can cause problems when attempting to use the properties that have been overwritten. Always be careful with this option.

Overwriting these properties can impact application logic, potentially allowing attackers to work around security controls, modify data, make the application unstable and more.

In versions of the package affected by this vulnerability, it is possible to circumvent this protection and overwrite prototype properties and functions by prefixing the name of the parameter with [ or ]. e.g. qs.parse("]=toString") will return {toString = true}, as a result, calling toString() on the object will throw an exception.

Example:

qs.parse('toString=foo', { allowPrototypes: false })
// {}

qs.parse("]=toString", { allowPrototypes: false })
// {toString = true} <== prototype overwritten

For more information, you can check out our blog.

Disclosure Timeline

  • February 13th, 2017 - Reported the issue to package owner.
  • February 13th, 2017 - Issue acknowledged by package owner.
  • February 16th, 2017 - Partial fix released in versions 6.0.3, 6.1.1, 6.2.2, 6.3.1.
  • March 6th, 2017 - Final fix released in versions 6.4.0,6.3.2, 6.2.3, 6.1.2 and 6.0.4

    Remediation

    Upgrade qs to version 6.0.4, 6.1.2, 6.2.3, 6.3.2 or higher.

    References

  • GitHub Commit
  • GitHub Issue

high severity

Improper minification of non-boolean comparisons

  • Vulnerable module: uglify-js
  • Introduced through: jade@1.11.0

Detailed paths

  • Introduced through: coggle-issue-importer@0.0.1 jade@1.11.0 transformers@2.1.0 uglify-js@2.2.5
    Remediation: Open PR to patch uglify-js@2.2.5.

Overview

uglify-js is a JavaScript parser, minifier, compressor and beautifier toolkit.

Tom MacWright discovered that UglifyJS versions 2.4.23 and earlier are affected by a vulnerability which allows a specially crafted Javascript file to have altered functionality after minification. This bug was demonstrated by Yan to allow potentially malicious code to be hidden within secure code, activated by minification.

Details

In Boolean algebra, DeMorgan's laws describe the relationships between conjunctions (&&), disjunctions (||) and negations (!). In Javascript form, they state that:

 !(a && b) === (!a) || (!b)
 !(a || b) === (!a) && (!b)

The law does not hold true when one of the values is not a boolean however.

Vulnerable versions of UglifyJS do not account for this restriction, and erroneously apply the laws to a statement if it can be reduced in length by it.

Consider this authentication function:

function isTokenValid(user) {
    var timeLeft =
        !!config && // config object exists
        !!user.token && // user object has a token
        !user.token.invalidated && // token is not explicitly invalidated
        !config.uninitialized && // config is initialized
        !config.ignoreTimestamps && // don't ignore timestamps
        getTimeLeft(user.token.expiry); // > 0 if expiration is in the future

    // The token must not be expired
    return timeLeft > 0;
}

function getTimeLeft(expiry) {
  return expiry - getSystemTime();
}

When minified with a vulnerable version of UglifyJS, it will produce the following insecure output, where a token will never expire:

( Formatted for readability )

function isTokenValid(user) {
    var timeLeft = !(                       // negation
        !config                             // config object does not exist
        || !user.token                      // user object does not have a token
        || user.token.invalidated           // token is explicitly invalidated
        || config.uninitialized             // config isn't initialized
        || config.ignoreTimestamps          // ignore timestamps
        || !getTimeLeft(user.token.expiry)  // > 0 if expiration is in the future
    );
    return timeLeft > 0
}

function getTimeLeft(expiry) {
    return expiry - getSystemTime()
}

Remediation

Upgrade UglifyJS to version 2.4.24 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: hoek
  • Introduced through: coggle@0.1.8

Detailed paths

  • Introduced through: coggle-issue-importer@0.0.1 coggle@0.1.8 unirest@0.4.2 request@2.51.0 hawk@1.1.1 hoek@0.9.1
  • Introduced through: coggle-issue-importer@0.0.1 coggle@0.1.8 unirest@0.4.2 request@2.51.0 hawk@1.1.1 boom@0.4.2 hoek@0.9.1
  • Introduced through: coggle-issue-importer@0.0.1 coggle@0.1.8 unirest@0.4.2 request@2.51.0 hawk@1.1.1 sntp@0.2.4 hoek@0.9.1
  • Introduced through: coggle-issue-importer@0.0.1 coggle@0.1.8 unirest@0.4.2 request@2.51.0 hawk@1.1.1 cryptiles@0.2.2 boom@0.4.2 hoek@0.9.1

Overview

hoek is an Utility methods for the hapi ecosystem.

Affected versions of this package are vulnerable to Prototype Pollution. The utilities function allow modification of the Object prototype. If an attacker can control part of the structure passed to this function, they could add or modify an existing property.

PoC by Olivier Arteau (HoLyVieR)

var Hoek = require('hoek');
var malicious_payload = '{"__proto__":{"oops":"It works !"}}';

var a = {};
console.log("Before : " + a.oops);
Hoek.merge({}, JSON.parse(malicious_payload));
console.log("After : " + a.oops);

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade hoek to version 4.2.1, 5.0.3 or higher.

References

medium severity

Timing Attack

  • Vulnerable module: http-signature
  • Introduced through: coggle@0.1.8

Detailed paths

  • Introduced through: coggle-issue-importer@0.0.1 coggle@0.1.8 unirest@0.4.2 request@2.51.0 http-signature@0.10.1
    Remediation: Open PR to patch http-signature@0.10.1.

Overview

http-signature is a reference implementation of Joyent's HTTP Signature scheme.

Affected versions of the package are vulnerable to Timing Attacks due to time-variable comparison of signatures.

The library implemented a character to character comparison, similar to the built-in string comparison mechanism, ===, and not a time constant string comparison. As a result, the comparison will fail faster when the first characters in the signature are incorrect. An attacker can use this difference to perform a timing attack, essentially allowing them to guess the signature one character at a time.

You can read more about timing attacks in Node.js on the Snyk blog.

Remediation

Upgrade http-signature to version 1.0.0 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: minimist
  • Introduced through: express@3.21.2

Detailed paths

  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 mkdirp@0.5.1 minimist@0.0.8
    Remediation: Upgrade to express@4.0.0.

Overview

minimist is a parse argument options module.

Affected versions of this package are vulnerable to Prototype Pollution. The library could be tricked into adding or modifying properties of Object.prototype using a constructor or __proto__ payload.

PoC by Snyk

require('minimist')('--__proto__.injected0 value0'.split(' '));
console.log(({}).injected0 === 'value0'); // true

require('minimist')('--constructor.prototype.injected1 value1'.split(' '));
console.log(({}).injected1 === 'value1'); // true

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade minimist to version 0.2.1, 1.2.3 or higher.

References

medium severity

Arbitrary Code Injection

  • Vulnerable module: morgan
  • Introduced through: express@3.21.2

Detailed paths

  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 morgan@1.6.1
    Remediation: Upgrade to express@4.0.0.

Overview

morgan is a HTTP request logger middleware for node.js.

Affected versions of this package are vulnerable to Arbitrary Code Injection. An attacker could use the format parameter to inject arbitrary commands.

Remediation

Upgrade morgan to version 1.9.1 or higher.

References

medium severity

Remote Memory Exposure

  • Vulnerable module: request
  • Introduced through: coggle@0.1.8

Detailed paths

  • Introduced through: coggle-issue-importer@0.0.1 coggle@0.1.8 unirest@0.4.2 request@2.51.0
    Remediation: Open PR to patch request@2.51.0.

Overview

request is a simplified http request client.

Affected versions of this package are vulnerable to Remote Memory Exposure. A potential remote memory exposure vulnerability exists in request. If a request uses a multipart attachment and the body type option is number with value X, then X bytes of uninitialized memory will be sent in the body of the request.

Note that while the impact of this vulnerability is high (memory exposure), exploiting it is likely difficult, as the attacker needs to somehow control the body type of the request. One potential exploit scenario is when a request is composed based on JSON input, including the body type, allowing a malicious JSON to trigger the memory leak.

Details

Constructing a Buffer class with integer N creates a Buffer of length N with non zero-ed out memory. Example:

var x = new Buffer(100); // uninitialized Buffer of length 100
// vs
var x = new Buffer('100'); // initialized Buffer with value of '100'

Initializing a multipart body in such manner will cause uninitialized memory to be sent in the body of the request.

Proof of concept

var http = require('http')
var request = require('request')

http.createServer(function (req, res) {
  var data = ''
  req.setEncoding('utf8')
  req.on('data', function (chunk) {
    console.log('data')
    data += chunk
  })
  req.on('end', function () {
    // this will print uninitialized memory from the client
    console.log('Client sent:\n', data)
  })
  res.end()
}).listen(8000)

request({
  method: 'POST',
  uri: 'http://localhost:8000',
  multipart: [{ body: 1000 }]
},
function (err, res, body) {
  if (err) return console.error('upload failed:', err)
  console.log('sent')
})

Remediation

Upgrade request to version 2.68.0 or higher.

References

medium severity

Uninitialized Memory Exposure

  • Vulnerable module: tunnel-agent
  • Introduced through: coggle@0.1.8

Detailed paths

  • Introduced through: coggle-issue-importer@0.0.1 coggle@0.1.8 unirest@0.4.2 request@2.51.0 tunnel-agent@0.4.3
    Remediation: Open PR to patch tunnel-agent@0.4.3.

Overview

tunnel-agent is HTTP proxy tunneling agent. Affected versions of the package are vulnerable to Uninitialized Memory Exposure.

A possible memory disclosure vulnerability exists when a value of type number is used to set the proxy.auth option of a request request and results in a possible uninitialized memory exposures in the request body.

This is a result of unobstructed use of the Buffer constructor, whose insecure default constructor increases the odds of memory leakage.

Details

Constructing a Buffer class with integer N creates a Buffer of length N with raw (not "zero-ed") memory.

In the following example, the first call would allocate 100 bytes of memory, while the second example will allocate the memory needed for the string "100":

// uninitialized Buffer of length 100
x = new Buffer(100);
// initialized Buffer with value of '100'
x = new Buffer('100');

tunnel-agent's request construction uses the default Buffer constructor as-is, making it easy to append uninitialized memory to an existing list. If the value of the buffer list is exposed to users, it may expose raw server side memory, potentially holding secrets, private data and code. This is a similar vulnerability to the infamous Heartbleed flaw in OpenSSL.

Proof of concept by ChALkeR

require('request')({
  method: 'GET',
  uri: 'http://www.example.com',
  tunnel: true,
  proxy:{
      protocol: 'http:',
      host:"127.0.0.1",
      port:8080,
      auth:80
  }
});

You can read more about the insecure Buffer behavior on our blog.

Similar vulnerabilities were discovered in request, mongoose, ws and sequelize.

Remediation

Upgrade tunnel-agent to version 0.6.0 or higher. Note This is vulnerable only for Node <=4

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: uglify-js
  • Introduced through: jade@1.11.0

Detailed paths

  • Introduced through: coggle-issue-importer@0.0.1 jade@1.11.0 transformers@2.1.0 uglify-js@2.2.5
    Remediation: Open PR to patch uglify-js@2.2.5.

Overview

The parse() function in the uglify-js package prior to version 2.6.0 is vulnerable to regular expression denial of service (ReDoS) attacks when long inputs of certain patterns are processed.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade to version 2.6.0 or greater. If a direct dependency update is not possible, use snyk wizard to patch this vulnerability.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: clean-css
  • Introduced through: jade@1.11.0

Detailed paths

  • Introduced through: coggle-issue-importer@0.0.1 jade@1.11.0 clean-css@3.4.28

Overview

clean-css is a fast and efficient CSS optimizer for Node.js platform and any modern browser.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). attacks. This can cause an impact of about 10 seconds matching time for data 70k characters long.

Disclosure Timeline

  • Feb 15th, 2018 - Initial Disclosure to package owner
  • Feb 20th, 2018 - Initial Response from package owner
  • Mar 6th, 2018 - Fix issued
  • Mar 7th, 2018 - Vulnerability published

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade clean-css to version 4.1.11 or higher.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: debug
  • Introduced through: express@3.21.2

Detailed paths

  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 debug@2.2.0
    Remediation: Upgrade to express@4.15.5.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 debug@2.2.0
    Remediation: Upgrade to express@4.0.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 send@0.13.0 debug@2.2.0
    Remediation: Upgrade to express@4.15.5.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 body-parser@1.13.3 debug@2.2.0
    Remediation: Upgrade to express@4.0.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 compression@1.5.2 debug@2.2.0
    Remediation: Upgrade to express@4.0.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 connect-timeout@1.6.2 debug@2.2.0
    Remediation: Upgrade to express@4.0.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 express-session@1.11.3 debug@2.2.0
    Remediation: Upgrade to express@4.0.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 finalhandler@0.4.0 debug@2.2.0
    Remediation: Upgrade to express@4.0.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 morgan@1.6.1 debug@2.2.0
    Remediation: Upgrade to express@4.0.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 serve-index@1.7.3 debug@2.2.0
    Remediation: Upgrade to express@4.0.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 serve-static@1.10.3 send@0.13.2 debug@2.2.0
    Remediation: Upgrade to express@4.0.0.

Overview

debug is a JavaScript debugging utility modelled after Node.js core's debugging technique..

debug uses printf-style formatting. Affected versions of this package are vulnerable to Regular expression Denial of Service (ReDoS) attacks via the the %o formatter (Pretty-print an Object all on a single line). It used a regular expression (/\s*\n\s*/g) in order to strip whitespaces and replace newlines with spaces, in order to join the data into a single line. This can cause a very low impact of about 2 seconds matching time for data 50k characters long.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade debug to version 2.6.9, 3.1.0 or higher.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: hawk
  • Introduced through: coggle@0.1.8

Detailed paths

  • Introduced through: coggle-issue-importer@0.0.1 coggle@0.1.8 unirest@0.4.2 request@2.51.0 hawk@1.1.1
    Remediation: Open PR to patch hawk@1.1.1.

Overview

hawk is an HTTP authentication scheme using a message authentication code (MAC) algorithm to provide partial HTTP request cryptographic verification.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) attacks.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

You can read more about Regular Expression Denial of Service (ReDoS) on our blog.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: mime
  • Introduced through: coggle@0.1.8 and express@3.21.2

Detailed paths

  • Introduced through: coggle-issue-importer@0.0.1 coggle@0.1.8 unirest@0.4.2 mime@1.2.11
    Remediation: Open PR to patch mime@1.2.11.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 send@0.13.0 mime@1.3.4
    Remediation: Upgrade to express@4.16.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 serve-static@1.10.3 send@0.13.2 mime@1.3.4
    Remediation: Upgrade to express@4.0.0.

Overview

mime is a comprehensive, compact MIME type module.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It uses regex the following regex /.*[\.\/\\]/ in its lookup, which can cause a slowdown of 2 seconds for 50k characters.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade mime to version 1.4.1, 2.0.3 or higher.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: ms
  • Introduced through: express@3.21.2

Detailed paths

  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 debug@2.2.0 ms@0.7.1
    Remediation: Upgrade to express@4.15.3.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 send@0.13.0 ms@0.7.1
    Remediation: Upgrade to express@4.15.3.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 debug@2.2.0 ms@0.7.1
    Remediation: Upgrade to express@4.0.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 send@0.13.0 debug@2.2.0 ms@0.7.1
    Remediation: Upgrade to express@4.15.3.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 connect-timeout@1.6.2 ms@0.7.1
    Remediation: Upgrade to express@4.0.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 body-parser@1.13.3 debug@2.2.0 ms@0.7.1
    Remediation: Upgrade to express@4.0.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 compression@1.5.2 debug@2.2.0 ms@0.7.1
    Remediation: Upgrade to express@4.0.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 connect-timeout@1.6.2 debug@2.2.0 ms@0.7.1
    Remediation: Upgrade to express@4.0.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 express-session@1.11.3 debug@2.2.0 ms@0.7.1
    Remediation: Upgrade to express@4.0.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 finalhandler@0.4.0 debug@2.2.0 ms@0.7.1
    Remediation: Upgrade to express@4.0.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 morgan@1.6.1 debug@2.2.0 ms@0.7.1
    Remediation: Upgrade to express@4.0.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 serve-index@1.7.3 debug@2.2.0 ms@0.7.1
    Remediation: Upgrade to express@4.0.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 serve-static@1.10.3 send@0.13.2 ms@0.7.1
    Remediation: Upgrade to express@4.0.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 serve-static@1.10.3 send@0.13.2 debug@2.2.0 ms@0.7.1
    Remediation: Upgrade to express@4.0.0.
  • Introduced through: coggle-issue-importer@0.0.1 express@3.21.2 connect@2.30.2 serve-favicon@2.3.2 ms@0.7.2
    Remediation: Upgrade to express@4.0.0.

Overview

ms is a tiny millisecond conversion utility.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to an incomplete fix for previously reported vulnerability npm:ms:20151024. The fix limited the length of accepted input string to 10,000 characters, and turned to be insufficient making it possible to block the event loop for 0.3 seconds (on a typical laptop) with a specially crafted string passed to ms() function.

Proof of concept

ms = require('ms');
ms('1'.repeat(9998) + 'Q') // Takes about ~0.3s

Note: Snyk's patch for this vulnerability limits input length to 100 characters. This new limit was deemed to be a breaking change by the author. Based on user feedback, we believe the risk of breakage is very low, while the value to your security is much greater, and therefore opted to still capture this change in a patch for earlier versions as well. Whenever patching security issues, we always suggest to run tests on your code to validate that nothing has been broken.

For more information on Regular Expression Denial of Service (ReDoS) attacks, go to our blog.

Disclosure Timeline

  • Feb 9th, 2017 - Reported the issue to package owner.
  • Feb 11th, 2017 - Issue acknowledged by package owner.
  • April 12th, 2017 - Fix PR opened by Snyk Security Team.
  • May 15th, 2017 - Vulnerability published.
  • May 16th, 2017 - Issue fixed and version 2.0.0 released.
  • May 21th, 2017 - Patches released for versions >=0.7.1, <=1.0.0.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade ms to version 2.0.0 or higher.

References