Vulnerabilities |
28 via 432 paths |
---|---|
Dependencies |
1138 |
Source |
npm |
Find, fix and prevent vulnerabilities in your code.
high severity
- Vulnerable module: json-ptr
- Introduced through: raml-json-enhance-node@0.2.7, api-console-builder@0.4.11 and others
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › raml-json-enhance-node@0.2.7 › raml-1-parser@1.1.67 › json-path@0.1.3 › json-ptr@0.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › json-path@0.1.3 › json-ptr@0.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › json-path@0.1.3 › json-ptr@0.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › json-path@0.1.3 › json-ptr@0.1.1
Overview
json-ptr is a complete implementation of JSON Pointer (RFC 6901) for nodejs and modern browsers.
Affected versions of this package are vulnerable to Arbitrary Code Execution via the .get()
method.
Remediation
Upgrade json-ptr
to version 2.1.0 or higher.
References
high severity
- Vulnerable module: ansi-regex
- Introduced through: update-notifier@1.0.3, api-console-dev-preview@0.1.4 and others
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › update-notifier@1.0.3 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › update-notifier@1.0.3 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › update-notifier@1.0.3 › boxen@0.6.0 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1Remediation: Upgrade to api-console-cli@2.0.0.
-
Introduced through: api-console-cli@0.2.6 › update-notifier@1.0.3 › boxen@0.6.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › update-notifier@1.0.3 › boxen@0.6.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › update-notifier@1.0.3 › boxen@0.6.0 › ansi-align@1.1.0 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1Remediation: Upgrade to api-console-cli@2.0.0.
-
Introduced through: api-console-cli@0.2.6 › update-notifier@1.0.3 › boxen@0.6.0 › widest-line@1.0.0 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1Remediation: Upgrade to api-console-cli@2.0.0.
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › polymer-analyzer@2.7.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › polymer-build@1.6.0 › polymer-analyzer@2.7.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › polymer-analyzer@2.7.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › polymer-build@1.6.0 › polymer-analyzer@2.7.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › gulp-cli@2.3.0 › yargs@7.1.2 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › gulp-cli@2.3.0 › yargs@7.1.2 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › gulp-cli@2.3.0 › yargs@7.1.2 › cliui@3.2.0 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › gulp-cli@2.3.0 › yargs@7.1.2 › cliui@3.2.0 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › polymer-bundler@3.1.1 › polymer-analyzer@2.7.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › polymer-build@1.6.0 › polymer-bundler@2.3.1 › polymer-analyzer@2.7.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › polyserve@0.27.15 › polymer-build@3.1.4 › polymer-analyzer@3.2.4 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › polymer-bundler@3.1.1 › polymer-analyzer@2.7.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › polymer-build@1.6.0 › polymer-bundler@2.3.1 › polymer-analyzer@2.7.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › polyserve@0.27.15 › polymer-build@3.1.4 › polymer-analyzer@3.2.4 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › gulp-cli@2.3.0 › yargs@7.1.2 › cliui@3.2.0 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › gulp-cli@2.3.0 › yargs@7.1.2 › cliui@3.2.0 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › gulp-cli@2.3.0 › yargs@7.1.2 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › gulp-cli@2.3.0 › yargs@7.1.2 › cliui@3.2.0 › wrap-ansi@2.1.0 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › gulp-cli@2.3.0 › yargs@7.1.2 › cliui@3.2.0 › wrap-ansi@2.1.0 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › gulp-cli@2.3.0 › yargs@7.1.2 › cliui@3.2.0 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-computed-properties@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-helper-call-delegate@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › polyserve@0.27.15 › polymer-build@3.1.4 › polymer-bundler@4.0.10 › polymer-analyzer@3.2.4 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-computed-properties@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-helper-call-delegate@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › polyserve@0.27.15 › polymer-build@3.1.4 › polymer-bundler@4.0.10 › polymer-analyzer@3.2.4 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › gulp-cli@2.3.0 › yargs@7.1.2 › cliui@3.2.0 › wrap-ansi@2.1.0 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › gulp-cli@2.3.0 › yargs@7.1.2 › cliui@3.2.0 › wrap-ansi@2.1.0 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › gulp-cli@2.3.0 › yargs@7.1.2 › cliui@3.2.0 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › gulp-cli@2.3.0 › yargs@7.1.2 › cliui@3.2.0 › wrap-ansi@2.1.0 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-computed-properties@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-systemjs@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-plugin-transform-async-generator-functions@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-helper-call-delegate@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › polyserve@0.27.15 › polymer-build@3.1.4 › polymer-bundler@4.0.10 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-computed-properties@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-systemjs@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-plugin-transform-async-generator-functions@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-helper-call-delegate@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › polyserve@0.27.15 › polymer-build@3.1.4 › polymer-bundler@4.0.10 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › gulp-cli@2.3.0 › yargs@7.1.2 › cliui@3.2.0 › wrap-ansi@2.1.0 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-plugin-transform-async-generator-functions@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-computed-properties@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-systemjs@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-plugin-transform-async-generator-functions@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-plugin-transform-exponentiation-operator@6.24.1 › babel-helper-builder-binary-assignment-operator-visitor@6.24.1 › babel-helper-explode-assignable-expression@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-exponentiation-operator@6.24.1 › babel-helper-builder-binary-assignment-operator-visitor@6.24.1 › babel-helper-explode-assignable-expression@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-helper-call-delegate@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-plugin-transform-async-generator-functions@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-computed-properties@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-systemjs@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-plugin-transform-async-generator-functions@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-plugin-transform-exponentiation-operator@6.24.1 › babel-helper-builder-binary-assignment-operator-visitor@6.24.1 › babel-helper-explode-assignable-expression@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-exponentiation-operator@6.24.1 › babel-helper-builder-binary-assignment-operator-visitor@6.24.1 › babel-helper-explode-assignable-expression@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-helper-call-delegate@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-plugin-transform-async-generator-functions@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-plugin-transform-async-generator-functions@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › sw-precache@5.2.1 › update-notifier@2.5.0 › boxen@1.3.0 › string-width@2.1.1 › strip-ansi@4.0.0 › ansi-regex@3.0.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › polymer-build@1.6.0 › sw-precache@5.2.1 › update-notifier@2.5.0 › boxen@1.3.0 › string-width@2.1.1 › strip-ansi@4.0.0 › ansi-regex@3.0.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › sw-precache@5.2.1 › update-notifier@2.5.0 › boxen@1.3.0 › ansi-align@2.0.0 › string-width@2.1.1 › strip-ansi@4.0.0 › ansi-regex@3.0.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › polymer-build@1.6.0 › sw-precache@5.2.1 › update-notifier@2.5.0 › boxen@1.3.0 › ansi-align@2.0.0 › string-width@2.1.1 › strip-ansi@4.0.0 › ansi-regex@3.0.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › sw-precache@5.2.1 › update-notifier@2.5.0 › boxen@1.3.0 › widest-line@2.0.1 › string-width@2.1.1 › strip-ansi@4.0.0 › ansi-regex@3.0.1
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › polymer-build@1.6.0 › sw-precache@5.2.1 › update-notifier@2.5.0 › boxen@1.3.0 › widest-line@2.0.1 › string-width@2.1.1 › strip-ansi@4.0.0 › ansi-regex@3.0.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › polyserve@0.27.15 › polymer-build@3.1.4 › sw-precache@5.2.1 › update-notifier@2.5.0 › boxen@1.3.0 › string-width@2.1.1 › strip-ansi@4.0.0 › ansi-regex@3.0.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › polyserve@0.27.15 › polymer-build@3.1.4 › sw-precache@5.2.1 › update-notifier@2.5.0 › boxen@1.3.0 › ansi-align@2.0.0 › string-width@2.1.1 › strip-ansi@4.0.0 › ansi-regex@3.0.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › polyserve@0.27.15 › polymer-build@3.1.4 › sw-precache@5.2.1 › update-notifier@2.5.0 › boxen@1.3.0 › widest-line@2.0.1 › string-width@2.1.1 › strip-ansi@4.0.0 › ansi-regex@3.0.1
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to the sub-patterns [[\\]()#;?]*
and (?:;[-a-zA-Z\\d\\/#&.:=?%@~_]*)*
.
PoC
import ansiRegex from 'ansi-regex';
for(var i = 1; i <= 50000; i++) {
var time = Date.now();
var attack_str = "\u001B["+";".repeat(i*10000);
ansiRegex().test(attack_str)
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade ansi-regex
to version 4.1.1, 5.0.1, 6.0.1 or higher.
References
high severity
- Vulnerable module: async
- Introduced through: polyserve@0.19.1 and api-console-dev-preview@0.1.4
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › find-port@1.0.1 › async@0.2.10
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › polyserve@0.27.15 › find-port@1.0.1 › async@0.2.10
Overview
Affected versions of this package are vulnerable to Prototype Pollution via the mapValues()
method.
PoC
//when objects are parsed, all properties are created as own (the objects can come from outside sources (http requests/ file))
const hasOwn = JSON.parse('{"__proto__": {"isAdmin": true}}');
//does not have the property, because it's inside object's own "__proto__"
console.log(hasOwn.isAdmin);
async.mapValues(hasOwn, (val, key, cb) => cb(null, val), (error, result) => {
// after the method executes, hasOwn.__proto__ value (isAdmin: true) replaces the prototype of the newly created object, leading to potential exploits.
console.log(result.isAdmin);
});
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
- Unsafe
Object
recursive merge - Property definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named _proto_
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to _proto_.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
- Application server
- Web server
How to prevent
- Freeze the prototype— use
Object.freeze (Object.prototype)
. - Require schema validation of JSON input.
- Avoid using unsafe recursive merge functions.
- Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution. - As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade async
to version 2.6.4, 3.2.2 or higher.
References
high severity
- Vulnerable module: fresh
- Introduced through: polyserve@0.19.1
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › send@0.14.2 › fresh@0.3.0Remediation: Upgrade to api-console-cli@0.2.13.
Overview
fresh
is HTTP response freshness testing.
Affected versions of this package are vulnerable to Regular expression Denial of Service (ReDoS) attacks. A Regular Expression (/ *, */
) was used for parsing HTTP headers and take about 2 seconds matching time for 50k characters.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade fresh
to version 0.5.2 or higher.
References
high severity
- Vulnerable module: trim-newlines
- Introduced through: api-console-builder@0.4.11, polyserve@0.19.1 and others
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › sw-precache@5.2.1 › meow@3.7.0 › trim-newlines@1.0.0
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › polymer-build@1.6.0 › sw-precache@5.2.1 › meow@3.7.0 › trim-newlines@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › polyserve@0.27.15 › polymer-build@3.1.4 › sw-precache@5.2.1 › meow@3.7.0 › trim-newlines@1.0.0
Overview
trim-newlines is a Trim newlines from the start and/or end of a string
Affected versions of this package are vulnerable to Denial of Service (DoS) via the end()
method.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
ws
package
Remediation
Upgrade trim-newlines
to version 3.0.1, 4.0.1 or higher.
References
high severity
- Vulnerable module: unset-value
- Introduced through: api-console-builder@0.4.11 and api-console-dev-preview@0.1.4
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › glob-watcher@5.0.5 › anymatch@2.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › glob-watcher@5.0.5 › anymatch@2.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › gulp-cli@2.3.0 › matchdep@2.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › gulp-cli@2.3.0 › matchdep@2.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › glob-watcher@5.0.5 › anymatch@2.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › glob-watcher@5.0.5 › anymatch@2.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › gulp-cli@2.3.0 › matchdep@2.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › gulp-cli@2.3.0 › matchdep@2.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › glob-watcher@5.0.5 › chokidar@2.1.8 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › glob-watcher@5.0.5 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › glob-watcher@5.0.5 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › gulp-cli@2.3.0 › matchdep@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › gulp-cli@2.3.0 › matchdep@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › glob-watcher@5.0.5 › anymatch@2.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › glob-watcher@5.0.5 › anymatch@2.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › gulp-cli@2.3.0 › matchdep@2.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › gulp-cli@2.3.0 › matchdep@2.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › glob-watcher@5.0.5 › anymatch@2.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › gulp-cli@2.3.0 › liftoff@3.1.0 › findup-sync@3.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › gulp-cli@2.3.0 › liftoff@3.1.0 › findup-sync@3.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › gulp-cli@2.3.0 › matchdep@2.0.0 › findup-sync@2.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › gulp-cli@2.3.0 › matchdep@2.0.0 › findup-sync@2.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › gulp-cli@2.3.0 › matchdep@2.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › glob-watcher@5.0.5 › anymatch@2.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › gulp-cli@2.3.0 › liftoff@3.1.0 › findup-sync@3.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › gulp-cli@2.3.0 › liftoff@3.1.0 › findup-sync@3.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › gulp-cli@2.3.0 › matchdep@2.0.0 › findup-sync@2.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › gulp-cli@2.3.0 › matchdep@2.0.0 › findup-sync@2.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › gulp-cli@2.3.0 › matchdep@2.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › glob-watcher@5.0.5 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › glob-watcher@5.0.5 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › gulp-cli@2.3.0 › matchdep@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › gulp-cli@2.3.0 › matchdep@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › glob-watcher@5.0.5 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › gulp-cli@2.3.0 › liftoff@3.1.0 › findup-sync@3.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › gulp-cli@2.3.0 › liftoff@3.1.0 › findup-sync@3.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › gulp-cli@2.3.0 › matchdep@2.0.0 › findup-sync@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › gulp-cli@2.3.0 › matchdep@2.0.0 › findup-sync@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › gulp-cli@2.3.0 › matchdep@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › glob-watcher@5.0.5 › anymatch@2.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › gulp-cli@2.3.0 › liftoff@3.1.0 › findup-sync@3.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › gulp-cli@2.3.0 › liftoff@3.1.0 › findup-sync@3.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › gulp-cli@2.3.0 › matchdep@2.0.0 › findup-sync@2.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › gulp-cli@2.3.0 › matchdep@2.0.0 › findup-sync@2.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › gulp-cli@2.3.0 › matchdep@2.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › glob-watcher@5.0.5 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › glob-watcher@5.0.5 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › gulp-cli@2.3.0 › liftoff@3.1.0 › findup-sync@3.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › gulp-cli@2.3.0 › matchdep@2.0.0 › findup-sync@2.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › glob-watcher@5.0.5 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › glob-watcher@5.0.5 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › gulp-cli@2.3.0 › liftoff@3.1.0 › findup-sync@3.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › gulp-cli@2.3.0 › matchdep@2.0.0 › findup-sync@2.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › glob-watcher@5.0.5 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › gulp-cli@2.3.0 › liftoff@3.1.0 › findup-sync@3.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › gulp-cli@2.3.0 › liftoff@3.1.0 › findup-sync@3.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › gulp-cli@2.3.0 › matchdep@2.0.0 › findup-sync@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › gulp-cli@2.3.0 › matchdep@2.0.0 › findup-sync@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › gulp-cli@2.3.0 › matchdep@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › glob-watcher@5.0.5 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › glob-watcher@5.0.5 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › gulp-cli@2.3.0 › liftoff@3.1.0 › findup-sync@3.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › gulp-cli@2.3.0 › matchdep@2.0.0 › findup-sync@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › glob-watcher@5.0.5 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › glob-watcher@5.0.5 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › gulp-cli@2.3.0 › liftoff@3.1.0 › findup-sync@3.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › gulp-cli@2.3.0 › matchdep@2.0.0 › findup-sync@2.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › glob-watcher@5.0.5 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › glob-watcher@5.0.5 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › gulp-cli@2.3.0 › liftoff@3.1.0 › findup-sync@3.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › gulp-cli@2.3.0 › matchdep@2.0.0 › findup-sync@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
Overview
Affected versions of this package are vulnerable to Prototype Pollution via the unset
function in index.js
, because it allows access to object prototype properties.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
- Unsafe
Object
recursive merge - Property definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named _proto_
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to _proto_.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
- Application server
- Web server
How to prevent
- Freeze the prototype— use
Object.freeze (Object.prototype)
. - Require schema validation of JSON input.
- Avoid using unsafe recursive merge functions.
- Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution. - As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade unset-value
to version 2.0.1 or higher.
References
high severity
- Vulnerable module: deep-extend
- Introduced through: polyserve@0.19.1 and api-console-builder@0.4.11
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › command-line-usage@3.0.8 › table-layout@0.3.0 › deep-extend@0.4.2Remediation: Upgrade to api-console-cli@0.2.13.
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › polymer-bundler@3.1.1 › command-line-usage@3.0.8 › table-layout@0.3.0 › deep-extend@0.4.2Remediation: Upgrade to api-console-cli@1.0.0.
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › polymer-build@1.6.0 › polymer-bundler@2.3.1 › command-line-usage@3.0.8 › table-layout@0.3.0 › deep-extend@0.4.2Remediation: Upgrade to api-console-cli@0.2.13.
Overview
deep-extend is a library for Recursive object extending.
Affected versions of this package are vulnerable to Prototype Pollution. Utilities function in all the listed modules can be tricked into modifying the prototype of "Object" when the attacker control part of the structure passed to these function. This can let an attacker add or modify existing property that will exist on all object.
PoC by HoLyVieR
var merge = require('deep-extend');
var malicious_payload = '{"__proto__":{"oops":"It works !"}}';
var a = {};
console.log("Before : " + a.oops);
merge({}, JSON.parse(malicious_payload));
console.log("After : " + a.oops);
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade deep-extend
to version 0.5.1 or higher.
References
high severity
- Vulnerable module: fstream
- Introduced through: api-console-builder@0.4.11 and api-console-dev-preview@0.1.4
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › api-console-sources-resolver@0.1.0 › unzip@0.1.11 › fstream@0.1.31
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › api-console-sources-resolver@0.1.0 › unzip@0.1.11 › fstream@0.1.31
Overview
fstream is a package that supports advanced FS Streaming for Node.
Affected versions of this package are vulnerable to Arbitrary File Overwrite. Extracting tarballs containing a hardlink to a file that already exists in the system and a file that matches the hardlink will overwrite the system's file with the contents of the extracted file.
Remediation
Upgrade fstream
to version 1.0.12 or higher.
References
high severity
- Vulnerable module: json-ptr
- Introduced through: raml-json-enhance-node@0.2.7, api-console-builder@0.4.11 and others
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › raml-json-enhance-node@0.2.7 › raml-1-parser@1.1.67 › json-path@0.1.3 › json-ptr@0.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › json-path@0.1.3 › json-ptr@0.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › json-path@0.1.3 › json-ptr@0.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › json-path@0.1.3 › json-ptr@0.1.1
Overview
json-ptr is a complete implementation of JSON Pointer (RFC 6901) for nodejs and modern browsers.
Affected versions of this package are vulnerable to Prototype Pollution. The issue occurs in the set operation (https://flitbit.github.io/json-ptr/classes/_src_pointer_.jsonpointer.html#set) when the force flag is set to true
.
The function recursively set the property in the target object, however it does not properly check the key being set, leading to a prototype pollution.
PoC
install
json-ptr
module:npm i json-ptr
run the following
poc.js
: ``` const { JsonPointer } = require("json-ptr");
let obj = {}; console.log("Before : " + obj.polluted); // JsonPointer.set({}, '/constructor/prototype/polluted', "yes", true); JsonPointer.set({}, '/proto/polluted', "yes", true); console.log("After : " + obj.polluted);
Observed output:
Before : undefined After : yes
## Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as `_proto_`, `constructor` and `prototype`. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the `Object.prototype` are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
- Unsafe `Object` recursive merge
- Property definition by path
### Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
<br>
When the source object contains a property named `_proto_` defined with `Object.defineProperty()` , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of `Object` and the source of `Object` as defined by the attacker. Properties are then copied on the `Object` prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: `merge({},source)`.
`lodash` and `Hoek` are examples of libraries susceptible to recursive merge attacks.
### Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: `theFunction(object, path, value)`
If the attacker can control the value of “path”, they can set this value to `_proto_.myValue`. `myValue` is then assigned to the prototype of the class of the object.
## Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type |Origin |Short description |
|--|--|--|
| **Denial of service (DoS)**|Client |This is the most likely attack. <br>DoS occurs when `Object` holds generic functions that are implicitly called for various operations (for example, `toString` and `valueOf`). <br> The attacker pollutes `Object.prototype.someattr` and alters its state to an unexpected value such as `Int` or `Object`. In this case, the code fails and is likely to cause a denial of service. <br>**For example:** if an attacker pollutes `Object.prototype.toString` by defining it as an integer, if the codebase at any point was reliant on `someobject.toString()` it would fail. |
|**Remote Code Execution**|Client|Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.<br>**For example:** `eval(someobject.someattr)`. In this case, if the attacker pollutes `Object.prototype.someattr` they are likely to be able to leverage this in order to execute code.|
|**Property Injection**|Client|The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.<br> **For example:** if a codebase checks privileges for `someuser.isAdmin`, then when the attacker pollutes `Object.prototype.isAdmin` and sets it to equal `true`, they can then achieve admin privileges.|
## Affected environments
The following environments are susceptible to a Prototype Pollution attack:
- Application server
- Web server
## How to prevent
1. Freeze the prototype— use `Object.freeze (Object.prototype)`.
2. Require schema validation of JSON input.
3. Avoid using unsafe recursive merge functions.
4. Consider using objects without prototypes (for example, `Object.create(null)`), breaking the prototype chain and preventing pollution.
5. As a best practice use `Map` instead of `Object`.
### For more information on this vulnerability type:
[Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018](https://github.com/HoLyVieR/prototype-pollution-nsec18/blob/master/paper/JavaScript_prototype_pollution_attack_in_NodeJS.pdf)
## Remediation
Upgrade `json-ptr` to version 2.0.0 or higher.
## References
- [Vulnerable Code](https://github.com/flitbit/json-ptr/blob/master/src/util.ts#L174)
high severity
- Vulnerable module: lodash.template
- Introduced through: api-console-builder@0.4.11, polyserve@0.19.1 and others
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › sw-precache@5.2.1 › lodash.template@4.5.0
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › polymer-build@1.6.0 › sw-precache@5.2.1 › lodash.template@4.5.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › polyserve@0.27.15 › polymer-build@3.1.4 › sw-precache@5.2.1 › lodash.template@4.5.0
Overview
lodash.template is a The Lodash method _.template exported as a Node.js module.
Affected versions of this package are vulnerable to Command Injection via template
.
PoC
var _ = require('lodash');
_.template('', { variable: '){console.log(process.env)}; with(obj' })()
Remediation
There is no fixed version for lodash.template
.
References
medium severity
- Vulnerable module: dot-prop
- Introduced through: update-notifier@1.0.3
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › update-notifier@1.0.3 › configstore@2.1.0 › dot-prop@3.0.0Remediation: Upgrade to api-console-cli@0.2.13.
Overview
dot-prop is a package to get, set, or delete a property from a nested object using a dot path.
Affected versions of this package are vulnerable to Prototype Pollution. It is possible for a user to modify the prototype of a base object.
PoC by aaron_costello
var dotProp = require("dot-prop")
const object = {};
console.log("Before " + object.b); //Undefined
dotProp.set(object, '__proto__.b', true);
console.log("After " + {}.b); //true
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade dot-prop
to version 4.2.1, 5.1.1 or higher.
References
medium severity
- Vulnerable module: json-ptr
- Introduced through: raml-json-enhance-node@0.2.7, api-console-builder@0.4.11 and others
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › raml-json-enhance-node@0.2.7 › raml-1-parser@1.1.67 › json-path@0.1.3 › json-ptr@0.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › json-path@0.1.3 › json-ptr@0.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › json-path@0.1.3 › json-ptr@0.1.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › json-path@0.1.3 › json-ptr@0.1.1
Overview
json-ptr is a complete implementation of JSON Pointer (RFC 6901) for nodejs and modern browsers.
Affected versions of this package are vulnerable to Prototype Pollution. A type confusion vulnerability can lead to a bypass of CVE-2020-7766 when the user-provided keys used in the pointer
parameter are arrays.
PoC
const { JsonPointer } = require("json-ptr");
// JsonPointer.set({}, ['__proto__', 'polluted'], 'yes', true);
// console.log(polluted); // Error: Attempted prototype pollution disallowed.
JsonPointer.set({}, [['__proto__'], 'polluted'], 'yes', true);
console.log(polluted); // yes
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
- Unsafe
Object
recursive merge - Property definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named _proto_
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to _proto_.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
- Application server
- Web server
How to prevent
- Freeze the prototype— use
Object.freeze (Object.prototype)
. - Require schema validation of JSON input.
- Avoid using unsafe recursive merge functions.
- Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution. - As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade json-ptr
to version 3.0.0 or higher.
References
medium severity
- Vulnerable module: underscore
- Introduced through: raml-json-enhance-node@0.2.7, api-console-builder@0.4.11 and others
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › raml-json-enhance-node@0.2.7 › raml-1-parser@1.1.67 › ts-model@0.0.18 › underscore@1.9.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › ts-model@0.0.18 › underscore@1.9.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › ts-model@0.0.18 › underscore@1.9.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › ts-model@0.0.18 › underscore@1.9.1
Overview
underscore is a JavaScript's functional programming helper library.
Affected versions of this package are vulnerable to Arbitrary Code Injection via the template
function, particularly when the variable
option is taken from _.templateSettings
as it is not sanitized.
PoC
const _ = require('underscore');
_.templateSettings.variable = "a = this.process.mainModule.require('child_process').execSync('touch HELLO')";
const t = _.template("")();
Remediation
Upgrade underscore
to version 1.13.0-2, 1.12.1 or higher.
References
medium severity
- Vulnerable module: browserslist
- Introduced through: api-console-dev-preview@0.1.4
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › babel-preset-env@1.7.0 › browserslist@3.2.8
Overview
browserslist is a Share target browsers between different front-end tools, like Autoprefixer, Stylelint and babel-env-preset
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) during parsing of queries.
PoC by Yeting Li
var browserslist = require("browserslist")
function build_attack(n) {
var ret = "> "
for (var i = 0; i < n; i++) {
ret += "1"
}
return ret + "!";
}
// browserslist('> 1%')
//browserslist(build_attack(500000))
for(var i = 1; i <= 500000; i++) {
if (i % 1000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
try{
browserslist(attack_str);
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
}
catch(e){
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
}
}
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade browserslist
to version 4.16.5 or higher.
References
medium severity
- Vulnerable module: datatype-expansion
- Introduced through: api-console-builder@0.4.11 and api-console-dev-preview@0.1.4
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › raml-json-enhance-node@0.3.2 › raml2obj@github:advanced-rest-client/raml2obj#6.1.2 › datatype-expansion@0.2.6
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-json-enhance-node@0.3.2 › raml2obj@github:advanced-rest-client/raml2obj#6.1.2 › datatype-expansion@0.2.6
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › raml-json-enhance-node@0.3.2 › raml2obj@github:advanced-rest-client/raml2obj#6.1.2 › datatype-expansion@0.2.6
Overview
datatype-expansion
is a utility tool to expand a given type and create a canonical form.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) attacks. This can cause an impact of about 10 seconds matching time for data 60 characters long.
Disclosure Timeline
- Feb 21th, 2018 - Initial Disclosure to package owner
- Feb 21th, 2018 - Initial Response from package owner
- Feb 24th, 2018 - Fix issued
- Feb 25th, 2018 - Vulnerability published
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade datatype-expansion
to version 0.3.1 or higher
References
medium severity
- Vulnerable module: date-and-time
- Introduced through: raml-json-enhance-node@0.2.7, api-console-builder@0.4.11 and others
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › raml-json-enhance-node@0.2.7 › raml-1-parser@1.1.67 › raml-definition-system@0.0.94 › raml-typesystem@0.0.96 › date-and-time@0.11.1
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › raml-definition-system@0.0.94 › raml-typesystem@0.0.96 › date-and-time@0.11.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › raml-definition-system@0.0.94 › raml-typesystem@0.0.96 › date-and-time@0.11.1
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › raml-definition-system@0.0.94 › raml-typesystem@0.0.96 › date-and-time@0.11.1
Overview
date-and-time is an A Minimalist DateTime utility for Node.js and the browser
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via date.compile
.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade date-and-time
to version 0.14.2 or higher.
References
medium severity
- Vulnerable module: glob-parent
- Introduced through: api-console-builder@0.4.11, api-console-dev-preview@0.1.4 and others
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › glob-parent@3.1.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › glob-watcher@5.0.5 › chokidar@2.1.8 › glob-parent@3.1.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp@4.0.2 › vinyl-fs@3.0.3 › glob-stream@6.1.0 › glob-parent@3.1.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › gulp@4.0.2 › vinyl-fs@3.0.3 › glob-stream@6.1.0 › glob-parent@3.1.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › vinyl-fs@2.4.4 › glob-stream@5.3.5 › glob-parent@3.1.0
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › polymer-build@1.6.0 › vinyl-fs@2.4.4 › glob-stream@5.3.5 › glob-parent@3.1.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › glob-watcher@5.0.5 › chokidar@2.1.8 › glob-parent@3.1.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › gulp@4.0.0 › vinyl-fs@3.0.3 › glob-stream@6.1.0 › glob-parent@3.1.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › polyserve@0.27.15 › polymer-build@3.1.4 › vinyl-fs@2.4.4 › glob-stream@5.3.5 › glob-parent@3.1.0
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › http-proxy-middleware@0.17.4 › micromatch@2.3.11 › parse-glob@3.0.4 › glob-base@0.3.0 › glob-parent@2.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › polyserve@0.27.15 › http-proxy-middleware@0.17.4 › micromatch@2.3.11 › parse-glob@3.0.4 › glob-base@0.3.0 › glob-parent@2.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › vinyl-fs@2.4.4 › glob-stream@5.3.5 › micromatch@2.3.11 › parse-glob@3.0.4 › glob-base@0.3.0 › glob-parent@2.0.0
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › polymer-build@1.6.0 › vinyl-fs@2.4.4 › glob-stream@5.3.5 › micromatch@2.3.11 › parse-glob@3.0.4 › glob-base@0.3.0 › glob-parent@2.0.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › polyserve@0.27.15 › polymer-build@3.1.4 › vinyl-fs@2.4.4 › glob-stream@5.3.5 › micromatch@2.3.11 › parse-glob@3.0.4 › glob-base@0.3.0 › glob-parent@2.0.0
Overview
glob-parent is a package that helps extracting the non-magic parent path from a glob string.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). The enclosure
regex used to check for strings ending in enclosure containing path separator.
PoC by Yeting Li
var globParent = require("glob-parent")
function build_attack(n) {
var ret = "{"
for (var i = 0; i < n; i++) {
ret += "/"
}
return ret;
}
globParent(build_attack(5000));
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade glob-parent
to version 5.1.2 or higher.
References
medium severity
- Vulnerable module: uglify-js
- Introduced through: api-console-builder@0.4.11 and api-console-dev-preview@0.1.4
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › gulp-htmlmin@5.0.1 › html-minifier@3.5.21 › uglify-js@3.4.10
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › html-minifier@3.5.21 › uglify-js@3.4.10
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › polyserve@0.27.15 › polymer-build@3.1.4 › html-minifier@3.5.21 › uglify-js@3.4.10
Overview
uglify-js is a JavaScript parser, minifier, compressor and beautifier toolkit.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the string_template
and the decode_template
functions.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade uglify-js
to version 3.14.3 or higher.
References
medium severity
- Vulnerable module: validator
- Introduced through: raml-json-enhance-node@0.2.7, api-console-builder@0.4.11 and others
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › raml-json-enhance-node@0.2.7 › raml-1-parser@1.1.67 › raml-definition-system@0.0.94 › raml-typesystem@0.0.96 › raml-json-validation@0.0.18 › z-schema@3.21.0 › validator@10.11.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › raml-definition-system@0.0.94 › raml-typesystem@0.0.96 › raml-json-validation@0.0.18 › z-schema@3.21.0 › validator@10.11.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › raml-definition-system@0.0.94 › raml-typesystem@0.0.96 › raml-json-validation@0.0.18 › z-schema@3.21.0 › validator@10.11.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › raml-definition-system@0.0.94 › raml-typesystem@0.0.96 › raml-json-validation@0.0.18 › z-schema@3.21.0 › validator@10.11.0
Overview
validator is a library of string validators and sanitizers.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isSlug
function
PoC
var validator = require("validator")
function build_attack(n) {
var ret = "111"
for (var i = 0; i < n; i++) {
ret += "a"
}
return ret+"_";
}
for(var i = 1; i <= 50000; i++) {
if (i % 10000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
validator.isSlug(attack_str)
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade validator
to version 13.6.0 or higher.
References
medium severity
- Vulnerable module: validator
- Introduced through: raml-json-enhance-node@0.2.7, api-console-builder@0.4.11 and others
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › raml-json-enhance-node@0.2.7 › raml-1-parser@1.1.67 › raml-definition-system@0.0.94 › raml-typesystem@0.0.96 › raml-json-validation@0.0.18 › z-schema@3.21.0 › validator@10.11.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › raml-definition-system@0.0.94 › raml-typesystem@0.0.96 › raml-json-validation@0.0.18 › z-schema@3.21.0 › validator@10.11.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › raml-definition-system@0.0.94 › raml-typesystem@0.0.96 › raml-json-validation@0.0.18 › z-schema@3.21.0 › validator@10.11.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › raml-definition-system@0.0.94 › raml-typesystem@0.0.96 › raml-json-validation@0.0.18 › z-schema@3.21.0 › validator@10.11.0
Overview
validator is a library of string validators and sanitizers.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the rtrim
function.
PoC
var validator = require("validator")
function build_attack(n) {
var ret = ""
for (var i = 0; i < n; i++) {
ret += " "
}
return ret+"◎";
}
for(var i = 1; i <= 50000; i++) {
if (i % 10000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
validator.rtrim(attack_str)
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade validator
to version 13.7.0 or higher.
References
medium severity
- Vulnerable module: validator
- Introduced through: raml-json-enhance-node@0.2.7, api-console-builder@0.4.11 and others
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › raml-json-enhance-node@0.2.7 › raml-1-parser@1.1.67 › raml-definition-system@0.0.94 › raml-typesystem@0.0.96 › raml-json-validation@0.0.18 › z-schema@3.21.0 › validator@10.11.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › raml-definition-system@0.0.94 › raml-typesystem@0.0.96 › raml-json-validation@0.0.18 › z-schema@3.21.0 › validator@10.11.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › raml-definition-system@0.0.94 › raml-typesystem@0.0.96 › raml-json-validation@0.0.18 › z-schema@3.21.0 › validator@10.11.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › raml-definition-system@0.0.94 › raml-typesystem@0.0.96 › raml-json-validation@0.0.18 › z-schema@3.21.0 › validator@10.11.0
Overview
validator is a library of string validators and sanitizers.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isHSL
function.
PoC
var validator = require("validator")
function build_attack(n) {
var ret = "hsla(0"
for (var i = 0; i < n; i++) {
ret += " "
}
return ret+"◎";
}
for(var i = 1; i <= 50000; i++) {
if (i % 1000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
validator.isHSL(attack_str)
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade validator
to version 13.6.0 or higher.
References
medium severity
- Vulnerable module: validator
- Introduced through: raml-json-enhance-node@0.2.7, api-console-builder@0.4.11 and others
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › raml-json-enhance-node@0.2.7 › raml-1-parser@1.1.67 › raml-definition-system@0.0.94 › raml-typesystem@0.0.96 › raml-json-validation@0.0.18 › z-schema@3.21.0 › validator@10.11.0
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › raml-definition-system@0.0.94 › raml-typesystem@0.0.96 › raml-json-validation@0.0.18 › z-schema@3.21.0 › validator@10.11.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › raml-definition-system@0.0.94 › raml-typesystem@0.0.96 › raml-json-validation@0.0.18 › z-schema@3.21.0 › validator@10.11.0
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › raml-json-enhance-node@0.3.2 › raml-1-parser@1.1.67 › raml-definition-system@0.0.94 › raml-typesystem@0.0.96 › raml-json-validation@0.0.18 › z-schema@3.21.0 › validator@10.11.0
Overview
validator is a library of string validators and sanitizers.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isEmail
function.
PoC
var validator = require("validator")
function build_attack(n) {
var ret = ""
for (var i = 0; i < n; i++) {
ret += "<"
}
return ret+"";
}
for(var i = 1; i <= 50000; i++) {
if (i % 10000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
validator.isEmail(attack_str,{ allow_display_name: true })
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade validator
to version 13.6.0 or higher.
References
medium severity
- Vulnerable module: ws
- Introduced through: api-console-dev-preview@0.1.4
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › ws@3.3.3
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › raml-js-data-provider@0.1.2 › ws@3.3.3
Overview
ws is a simple to use websocket client, server and console for node.js.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). A specially crafted value of the Sec-Websocket-Protocol
header can be used to significantly slow down a ws
server.
##PoC
for (const length of [1000, 2000, 4000, 8000, 16000, 32000]) {
const value = 'b' + ' '.repeat(length) + 'x';
const start = process.hrtime.bigint();
value.trim().split(/ *, */);
const end = process.hrtime.bigint();
console.log('length = %d, time = %f ns', length, end - start);
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade ws
to version 7.4.6, 6.2.2, 5.2.3 or higher.
References
low severity
- Vulnerable module: braces
- Introduced through: polyserve@0.19.1, api-console-dev-preview@0.1.4 and others
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › http-proxy-middleware@0.17.4 › micromatch@2.3.11 › braces@1.8.5
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › polyserve@0.27.15 › http-proxy-middleware@0.17.4 › micromatch@2.3.11 › braces@1.8.5
-
Introduced through: api-console-cli@0.2.6 › api-console-builder@0.4.11 › polymer-build@2.5.0 › vinyl-fs@2.4.4 › glob-stream@5.3.5 › micromatch@2.3.11 › braces@1.8.5
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › polymer-build@1.6.0 › vinyl-fs@2.4.4 › glob-stream@5.3.5 › micromatch@2.3.11 › braces@1.8.5
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › polyserve@0.27.15 › polymer-build@3.1.4 › vinyl-fs@2.4.4 › glob-stream@5.3.5 › micromatch@2.3.11 › braces@1.8.5
Overview
braces is a Bash-like brace expansion, implemented in JavaScript.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It used a regular expression (^\{(,+(?:(\{,+\})*),*|,*(?:(\{,+\})*),+)\}
) in order to detects empty braces. This can cause an impact of about 10 seconds matching time for data 50K characters long.
Disclosure Timeline
- Feb 15th, 2018 - Initial Disclosure to package owner
- Feb 16th, 2018 - Initial Response from package owner
- Feb 18th, 2018 - Fix issued
- Feb 19th, 2018 - Vulnerability published
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade braces
to version 2.3.1 or higher.
References
low severity
- Vulnerable module: debug
- Introduced through: polyserve@0.19.1
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › send@0.14.2 › debug@2.2.0Remediation: Upgrade to api-console-cli@0.2.13.
Overview
debug
is a JavaScript debugging utility modelled after Node.js core's debugging technique..
debug
uses printf-style formatting. Affected versions of this package are vulnerable to Regular expression Denial of Service (ReDoS) attacks via the the %o
formatter (Pretty-print an Object all on a single line). It used a regular expression (/\s*\n\s*/g
) in order to strip whitespaces and replace newlines with spaces, in order to join the data into a single line. This can cause a very low impact of about 2 seconds matching time for data 50k characters long.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade debug
to version 2.6.9, 3.1.0 or higher.
References
low severity
- Vulnerable module: mime
- Introduced through: polyserve@0.19.1
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › send@0.14.2 › mime@1.3.4Remediation: Upgrade to api-console-cli@0.2.13.
Overview
mime is a comprehensive, compact MIME type module.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It uses regex the following regex /.*[\.\/\\]/
in its lookup, which can cause a slowdown of 2 seconds for 50k characters.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade mime
to version 1.4.1, 2.0.3 or higher.
References
low severity
- Vulnerable module: minimist
- Introduced through: api-console-dev-preview@0.1.4
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › api-console-dev-preview@0.1.4 › polyserve@0.27.15 › bower-config@1.4.3 › minimist@0.2.1
Overview
minimist is a parse argument options module.
Affected versions of this package are vulnerable to Prototype Pollution due to a missing handler to Function.prototype
.
Note: this is a bypass to CVE-2020-7598
PoC by Snyk
require('minimist')('--_.constructor.constructor.prototype.foo bar'.split(' '));
console.log((function(){}).foo); // bar
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
- Unsafe
Object
recursive merge - Property definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named _proto_
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to _proto_.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
- Application server
- Web server
How to prevent
- Freeze the prototype— use
Object.freeze (Object.prototype)
. - Require schema validation of JSON input.
- Avoid using unsafe recursive merge functions.
- Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution. - As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade minimist
to version 1.2.6 or higher.
References
low severity
- Vulnerable module: ms
- Introduced through: polyserve@0.19.1
Detailed paths
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › send@0.14.2 › debug@2.2.0 › ms@0.7.1Remediation: Upgrade to api-console-cli@0.2.13.
-
Introduced through: api-console-cli@0.2.6 › polyserve@0.19.1 › send@0.14.2 › ms@0.7.2Remediation: Upgrade to api-console-cli@0.2.13.
Overview
ms
is a tiny millisecond conversion utility.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to an incomplete fix for previously reported vulnerability npm:ms:20151024. The fix limited the length of accepted input string to 10,000 characters, and turned to be insufficient making it possible to block the event loop for 0.3 seconds (on a typical laptop) with a specially crafted string passed to ms()
function.
Proof of concept
ms = require('ms');
ms('1'.repeat(9998) + 'Q') // Takes about ~0.3s
Note: Snyk's patch for this vulnerability limits input length to 100 characters. This new limit was deemed to be a breaking change by the author. Based on user feedback, we believe the risk of breakage is very low, while the value to your security is much greater, and therefore opted to still capture this change in a patch for earlier versions as well. Whenever patching security issues, we always suggest to run tests on your code to validate that nothing has been broken.
For more information on Regular Expression Denial of Service (ReDoS)
attacks, go to our blog.
Disclosure Timeline
- Feb 9th, 2017 - Reported the issue to package owner.
- Feb 11th, 2017 - Issue acknowledged by package owner.
- April 12th, 2017 - Fix PR opened by Snyk Security Team.
- May 15th, 2017 - Vulnerability published.
- May 16th, 2017 - Issue fixed and version
2.0.0
released. - May 21th, 2017 - Patches released for versions
>=0.7.1, <=1.0.0
.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade ms
to version 2.0.0 or higher.