Find, fix and prevent vulnerabilities in your code.
medium severity
new
- Vulnerable module: elliptic
- Introduced through: crypto-browserify@3.12.1
Detailed paths
-
Introduced through: sell-stuff@webjamapps/SellStuff#c179457c86637fb0cd21491e4b37ee0d97f2e988 › crypto-browserify@3.12.1 › browserify-sign@4.2.5 › elliptic@6.6.1
-
Introduced through: sell-stuff@webjamapps/SellStuff#c179457c86637fb0cd21491e4b37ee0d97f2e988 › crypto-browserify@3.12.1 › create-ecdh@4.0.4 › elliptic@6.6.1
Overview
elliptic is a fast elliptic-curve cryptography implementation in plain javascript.
Affected versions of this package are vulnerable to Use of a Cryptographic Primitive with a Risky Implementation due to the incorrect computation of the byte-length of k value with leading zeros resulting in its truncation. An attacker can obtain the secret key by analyzing both a faulty signature generated by a vulnerable implementation and a correct signature for the same inputs.
Note:
There is a distinct but related issue CVE-2024-48948.
Remediation
There is no fixed version for elliptic.
References
medium severity
- Vulnerable module: tinymce
- Introduced through: @tinymce/tinymce-react@4.3.2
Detailed paths
-
Introduced through: sell-stuff@webjamapps/SellStuff#c179457c86637fb0cd21491e4b37ee0d97f2e988 › @tinymce/tinymce-react@4.3.2 › tinymce@6.8.6Remediation: Upgrade to @tinymce/tinymce-react@5.0.0.
Overview
tinymce is a web-based JavaScript HTML WYSIWYG editor control.
Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via iframe elements inserted into the editor. Attacks are limited by same-origin browser protections, but downloading files is still possible.
Workaround
This vulnerability can be avoided by applying stricter content security policies with frame-src or object-src configuration.
In version 6.8.0 and above sandbox_iframes can be set to true to directly solve this issue.
Details
Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as < and > can be coded as > in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
| Type | Origin | Description |
|---|---|---|
| Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
| Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
| DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
| Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?,&,/,<,>and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade tinymce to version 7.0.0 or higher.
References
medium severity
- Vulnerable module: tinymce
- Introduced through: @tinymce/tinymce-react@4.3.2
Detailed paths
-
Introduced through: sell-stuff@webjamapps/SellStuff#c179457c86637fb0cd21491e4b37ee0d97f2e988 › @tinymce/tinymce-react@4.3.2 › tinymce@6.8.6Remediation: Upgrade to @tinymce/tinymce-react@5.0.0.
Overview
tinymce is a web-based JavaScript HTML WYSIWYG editor control.
Affected versions of this package are vulnerable to Cross-site Scripting (XSS) when loading SVG files via object or embed elements.
Workaround
This vulnerability can be avoided by simulating the functionality of the convert_unsafe_embeds option that was added to address it, by applying a custom NodeFilter with the editor.parser.addNodeFilter or editor.serializer.addNodeFilter API.
In version 6.8.0 and above convert_unsafe_embeds can be set to true to directly solve this issue.
Details
Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as < and > can be coded as > in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
| Type | Origin | Description |
|---|---|---|
| Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
| Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
| DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
| Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?,&,/,<,>and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade tinymce to version 7.0.0 or higher.
References
low severity
- Vulnerable module: sirv
- Introduced through: webpack-bundle-analyzer@4.6.1
Detailed paths
-
Introduced through: sell-stuff@webjamapps/SellStuff#c179457c86637fb0cd21491e4b37ee0d97f2e988 › webpack-bundle-analyzer@4.6.1 › sirv@1.0.19Remediation: Upgrade to webpack-bundle-analyzer@5.2.0.
Overview
sirv is a The optimized & lightweight middleware for serving requests to static assets
Affected versions of this package are vulnerable to Directory Traversal via the viaLocal function, which uses a dirname prefix. An attacker can access files outside the intended public directory by sending crafted requests that exploit symlinks and naming similarities, bypassing access restrictions.
Note: This is only exploitable if the server is explicitly exposed to the network using the --host flag or the server.host configuration option, the public directory feature is enabled, and there are symlinks in a public directory.
Details
A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.
Directory Traversal vulnerabilities can be generally divided into two types:
- Information Disclosure: Allows the attacker to gain information about the folder structure or read the contents of sensitive files on the system.
st is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public route.
If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.
curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa
Note %2e is the URL encoded version of . (dot).
- Writing arbitrary files: Allows the attacker to create or replace existing files. This type of vulnerability is also known as
Zip-Slip.
One way to achieve this is by using a malicious zip archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.
The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:
2018-04-15 22:04:29 ..... 19 19 good.txt
2018-04-15 22:04:42 ..... 20 20 ../../../../../../root/.ssh/authorized_keys
Remediation
Upgrade sirv to version 3.0.2 or higher.