Vulnerabilities

9 via 9 paths

Dependencies

5

Source

GitHub

Commit

aca84a4e

Find, fix and prevent vulnerabilities in your code.

Severity
  • 2
  • 7
Status
  • 9
  • 0
  • 0

high severity

Improper Input Validation

  • Vulnerable module: url-parse
  • Introduced through: url-parse@1.4.7

Detailed paths

  • Introduced through: @paralleldrive/feature-toggles@paralleldrive/feature-toggles#aca84a4eab50eaca8d6b2e7c6b4b99eaf5de849b url-parse@1.4.7
    Remediation: Upgrade to url-parse@1.5.9.

Overview

url-parse is a Small footprint URL parser that works seamlessly across Node.js and browser environments.

Affected versions of this package are vulnerable to Improper Input Validation due to improper fix of CVE-2020-8124 , it is possible to be exploited via the \b (backspace) character.

PoC:

const parse = require('./index.js')

url = parse('\bhttp://google.com')

console.log(url)

Output:

{
  slashes: false,
  protocol: '',
  hash: '',
  query: '',
  pathname: '\bhttp://google.com',
  auth: '',
  host: '',
  port: '',
  hostname: '',
  password: '',
  username: '',
  origin: 'null',
  href: '\bhttp://google.com'
}

Remediation

Upgrade url-parse to version 1.5.9 or higher.

References

high severity

Command Injection

  • Vulnerable module: lodash
  • Introduced through: lodash@4.17.20

Detailed paths

  • Introduced through: @paralleldrive/feature-toggles@paralleldrive/feature-toggles#aca84a4eab50eaca8d6b2e7c6b4b99eaf5de849b lodash@4.17.20
    Remediation: Upgrade to lodash@4.17.21.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Command Injection via template.

PoC

var _ = require('lodash');

_.template('', { variable: '){console.log(process.env)}; with(obj' })()

Remediation

Upgrade lodash to version 4.17.21 or higher.

References

medium severity

Access Restriction Bypass

  • Vulnerable module: url-parse
  • Introduced through: url-parse@1.4.7

Detailed paths

  • Introduced through: @paralleldrive/feature-toggles@paralleldrive/feature-toggles#aca84a4eab50eaca8d6b2e7c6b4b99eaf5de849b url-parse@1.4.7
    Remediation: Upgrade to url-parse@1.5.6.

Overview

url-parse is a Small footprint URL parser that works seamlessly across Node.js and browser environments.

Affected versions of this package are vulnerable to Access Restriction Bypass due to improper parsing process, that may lead to incorrect handling of authentication credentials and hostname, which allows bypass of hostname validation.

PoC:

// PoC.js
 var parse = require('url-parse')
var cc=parse("http://admin:password123@@127.0.0.1")

//Output:
{ slashes: true,
  protocol: 'http:',
  hash: '',
  query: '',
  pathname: '/',
  auth: 'admin:password123',
  host: '@127.0.0.1',
  port: '',
  hostname: '@127.0.0.1',
  password: 'password123',
  username: 'admin',
  origin: 'http://@127.0.0.1',
  href: 'http://admin:password123@@127.0.0.1/' }

Remediation

Upgrade url-parse to version 1.5.6 or higher.

References

medium severity

Authorization Bypass

  • Vulnerable module: url-parse
  • Introduced through: url-parse@1.4.7

Detailed paths

  • Introduced through: @paralleldrive/feature-toggles@paralleldrive/feature-toggles#aca84a4eab50eaca8d6b2e7c6b4b99eaf5de849b url-parse@1.4.7
    Remediation: Upgrade to url-parse@1.5.8.

Overview

url-parse is a Small footprint URL parser that works seamlessly across Node.js and browser environments.

Affected versions of this package are vulnerable to Authorization Bypass via the hostname field of a parsed URL, because "url-parse" is unable to find the correct hostname when no port number is provided in the URL.

PoC:

var Url = require('url-parse');
var PAYLOAD = "http://example.com:";

console.log(Url(PAYLOAD));

// Expected hostname: example.com
// Actual hostname by url-parse: example.com:

Output:

{
  slashes: true,
  protocol: 'http:',
  hash: '',
  query: '',
  pathname: '/',
  auth: '',
  host: 'example.com:',
  port: '',
  hostname: 'example.com:',
  password: '',
  username: '',
  origin: 'http://example.com:',
  href: 'http://example.com:/'
}

Remediation

Upgrade url-parse to version 1.5.8 or higher.

References

medium severity

Authorization Bypass Through User-Controlled Key

  • Vulnerable module: url-parse
  • Introduced through: url-parse@1.4.7

Detailed paths

  • Introduced through: @paralleldrive/feature-toggles@paralleldrive/feature-toggles#aca84a4eab50eaca8d6b2e7c6b4b99eaf5de849b url-parse@1.4.7
    Remediation: Upgrade to url-parse@1.5.7.

Overview

url-parse is a Small footprint URL parser that works seamlessly across Node.js and browser environments.

Affected versions of this package are vulnerable to Authorization Bypass Through User-Controlled Key due to incorrect conversion of @ in the protocol field of the HREF.

PoC:

parse = require('url-parse')

console.log(parse("http:@/127.0.0.1"))

Output:

{
  slashes: true,
  protocol: 'http:',
  hash: '',
  query: '',
  pathname: '/127.0.0.1',
  auth: '',
  host: '',
  port: '',
  hostname: '',
  password: '',
  username: '',
  origin: 'null',
  href: 'http:///127.0.0.1'
}

Remediation

Upgrade url-parse to version 1.5.7 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: lodash
  • Introduced through: lodash@4.17.20

Detailed paths

  • Introduced through: @paralleldrive/feature-toggles@paralleldrive/feature-toggles#aca84a4eab50eaca8d6b2e7c6b4b99eaf5de849b lodash@4.17.20
    Remediation: Upgrade to lodash@4.17.21.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the toNumber, trim and trimEnd functions.

POC

var lo = require('lodash');

function build_blank (n) {
var ret = "1"
for (var i = 0; i < n; i++) {
ret += " "
}

return ret + "1";
}

var s = build_blank(50000)
var time0 = Date.now();
lo.trim(s)
var time_cost0 = Date.now() - time0;
console.log("time_cost0: " + time_cost0)

var time1 = Date.now();
lo.toNumber(s)
var time_cost1 = Date.now() - time1;
console.log("time_cost1: " + time_cost1)

var time2 = Date.now();
lo.trimEnd(s)
var time_cost2 = Date.now() - time2;
console.log("time_cost2: " + time_cost2)

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade lodash to version 4.17.21 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: ramda
  • Introduced through: ramda@0.27.1

Detailed paths

  • Introduced through: @paralleldrive/feature-toggles@paralleldrive/feature-toggles#aca84a4eab50eaca8d6b2e7c6b4b99eaf5de849b ramda@0.27.1
    Remediation: Upgrade to ramda@0.27.2.

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) in source/trim.js within variable ws.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade ramda to version 0.27.2 or higher.

References

medium severity

Improper Input Validation

  • Vulnerable module: url-parse
  • Introduced through: url-parse@1.4.7

Detailed paths

  • Introduced through: @paralleldrive/feature-toggles@paralleldrive/feature-toggles#aca84a4eab50eaca8d6b2e7c6b4b99eaf5de849b url-parse@1.4.7
    Remediation: Upgrade to url-parse@1.5.0.

Overview

url-parse is a Small footprint URL parser that works seamlessly across Node.js and browser environments.

Affected versions of this package are vulnerable to Improper Input Validation. It mishandles certain uses of backslash such as http:\/ and interprets the URI as a relative path.

Remediation

Upgrade url-parse to version 1.5.0 or higher.

References

medium severity

Open Redirect

  • Vulnerable module: url-parse
  • Introduced through: url-parse@1.4.7

Detailed paths

  • Introduced through: @paralleldrive/feature-toggles@paralleldrive/feature-toggles#aca84a4eab50eaca8d6b2e7c6b4b99eaf5de849b url-parse@1.4.7
    Remediation: Upgrade to url-parse@1.5.2.

Overview

url-parse is a Small footprint URL parser that works seamlessly across Node.js and browser environments.

Affected versions of this package are vulnerable to Open Redirect due to improper escaping of slash characters.

Remediation

Upgrade url-parse to version 1.5.2 or higher.

References