Vulnerabilities

14 via 14 paths

Dependencies

164

Source

GitHub

Commit

b3bd6f51

Find, fix and prevent vulnerabilities in your code.

Severity
  • 7
  • 7
Status
  • 14
  • 0
  • 0

high severity

Improper Neutralization of Special Elements in Data Query Logic

  • Vulnerable module: mongoose
  • Introduced through: mongoose@5.8.2

Detailed paths

  • Introduced through: iot-tracking@ocariot/iot-tracking#b3bd6f518b070806ca26414a670c4afa91c7922e mongoose@5.8.2
    Remediation: Upgrade to mongoose@6.13.5.

Overview

mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.

Affected versions of this package are vulnerable to Improper Neutralization of Special Elements in Data Query Logic due to the improper handling of $where in match queries. An attacker can manipulate search queries to inject malicious code.

Remediation

Upgrade mongoose to version 6.13.5, 7.8.3, 8.8.3 or higher.

References

high severity

Improper Neutralization of Special Elements in Data Query Logic

  • Vulnerable module: mongoose
  • Introduced through: mongoose@5.8.2

Detailed paths

  • Introduced through: iot-tracking@ocariot/iot-tracking#b3bd6f518b070806ca26414a670c4afa91c7922e mongoose@5.8.2
    Remediation: Upgrade to mongoose@6.13.6.

Overview

mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.

Affected versions of this package are vulnerable to Improper Neutralization of Special Elements in Data Query Logic due to the improper use of a $where filter in conjunction with the populate() match. An attacker can manipulate search queries to retrieve or alter information without proper authorization by injecting malicious input into the query.

Note: This vulnerability derives from an incomplete fix of CVE-2024-53900

Remediation

Upgrade mongoose to version 6.13.6, 7.8.4, 8.9.5 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: mongoose
  • Introduced through: mongoose@5.8.2

Detailed paths

  • Introduced through: iot-tracking@ocariot/iot-tracking#b3bd6f518b070806ca26414a670c4afa91c7922e mongoose@5.8.2
    Remediation: Upgrade to mongoose@5.13.20.

Overview

mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.

Affected versions of this package are vulnerable to Prototype Pollution in document.js, via update functions such as findByIdAndUpdate(). This allows attackers to achieve remote code execution.

Note: Only applications using Express and EJS are vulnerable.

PoC


import { connect, model, Schema } from 'mongoose';

await connect('mongodb://127.0.0.1:27017/exploit');

const Example = model('Example', new Schema({ hello: String }));

const example = await new Example({ hello: 'world!' }).save();
await Example.findByIdAndUpdate(example._id, {
    $rename: {
        hello: '__proto__.polluted'
    }
});

// this is what causes the pollution
await Example.find();

const test = {};
console.log(test.polluted); // world!
console.log(Object.prototype); // [Object: null prototype] { polluted: 'world!' }

process.exit();

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mongoose to version 5.13.20, 6.11.3, 7.3.4 or higher.

References

high severity

Improper Input Validation

  • Vulnerable module: url-parse
  • Introduced through: @ocariot/rabbitmq-client-node@1.6.2

Detailed paths

  • Introduced through: iot-tracking@ocariot/iot-tracking#b3bd6f518b070806ca26414a670c4afa91c7922e @ocariot/rabbitmq-client-node@1.6.2 amqp-client-node@1.0.11 amqplib@0.5.6 url-parse@1.4.7

Overview

url-parse is a Small footprint URL parser that works seamlessly across Node.js and browser environments.

Affected versions of this package are vulnerable to Improper Input Validation due to improper fix of CVE-2020-8124 , it is possible to be exploited via the \b (backspace) character.

PoC:

const parse = require('./index.js')

url = parse('\bhttp://google.com')

console.log(url)

Output:

{
  slashes: false,
  protocol: '',
  hash: '',
  query: '',
  pathname: '\bhttp://google.com',
  auth: '',
  host: '',
  port: '',
  hostname: '',
  password: '',
  username: '',
  origin: 'null',
  href: '\bhttp://google.com'
}

Remediation

Upgrade url-parse to version 1.5.9 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: mquery
  • Introduced through: mongoose@5.8.2

Detailed paths

  • Introduced through: iot-tracking@ocariot/iot-tracking#b3bd6f518b070806ca26414a670c4afa91c7922e mongoose@5.8.2 mquery@3.2.2
    Remediation: Upgrade to mongoose@5.12.3.

Overview

mquery is an Expressive query building for MongoDB

Affected versions of this package are vulnerable to Prototype Pollution via the mergeClone() function.

PoC by zhou, peng

mquery = require('mquery');
var malicious_payload = '{"__proto__":{"polluted":"HACKED"}}';
console.log('Before:', {}.polluted); // undefined
mquery.utils.mergeClone({}, JSON.parse(malicious_payload));
console.log('After:', {}.polluted); // HACKED

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mquery to version 3.2.5 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: mquery
  • Introduced through: mongoose@5.8.2

Detailed paths

  • Introduced through: iot-tracking@ocariot/iot-tracking#b3bd6f518b070806ca26414a670c4afa91c7922e mongoose@5.8.2 mquery@3.2.2
    Remediation: Upgrade to mongoose@5.11.7.

Overview

mquery is an Expressive query building for MongoDB

Affected versions of this package are vulnerable to Prototype Pollution via the merge function within lib/utils.js. Depending on if user input is provided, an attacker can overwrite and pollute the object prototype of a program.

PoC

   require('./env').getCollection(function(err, collection) {
      assert.ifError(err);
      col = collection;
      done();
    });
    var payload = JSON.parse('{"__proto__": {"polluted": "vulnerable"}}');
    var m = mquery(payload);
    console.log({}.polluted);
// The empty object {} will have a property called polluted which will print vulnerable

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mquery to version 3.2.3 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: mongoose
  • Introduced through: mongoose@5.8.2

Detailed paths

  • Introduced through: iot-tracking@ocariot/iot-tracking#b3bd6f518b070806ca26414a670c4afa91c7922e mongoose@5.8.2
    Remediation: Upgrade to mongoose@5.13.15.

Overview

mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.

Affected versions of this package are vulnerable to Prototype Pollution in the Schema.path() function.

Note: CVE-2022-24304 is a duplicate of CVE-2022-2564.

PoC:

const mongoose = require('mongoose');
const schema = new mongoose.Schema();

malicious_payload = '__proto__.toString'

schema.path(malicious_payload, [String])

x = {}
console.log(x.toString())

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mongoose to version 5.13.15, 6.4.6 or higher.

References

medium severity

Access Restriction Bypass

  • Vulnerable module: url-parse
  • Introduced through: @ocariot/rabbitmq-client-node@1.6.2

Detailed paths

  • Introduced through: iot-tracking@ocariot/iot-tracking#b3bd6f518b070806ca26414a670c4afa91c7922e @ocariot/rabbitmq-client-node@1.6.2 amqp-client-node@1.0.11 amqplib@0.5.6 url-parse@1.4.7

Overview

url-parse is a Small footprint URL parser that works seamlessly across Node.js and browser environments.

Affected versions of this package are vulnerable to Access Restriction Bypass due to improper parsing process, that may lead to incorrect handling of authentication credentials and hostname, which allows bypass of hostname validation.

PoC:

// PoC.js
 var parse = require('url-parse')
var cc=parse("http://admin:password123@@127.0.0.1")

//Output:
{ slashes: true,
  protocol: 'http:',
  hash: '',
  query: '',
  pathname: '/',
  auth: 'admin:password123',
  host: '@127.0.0.1',
  port: '',
  hostname: '@127.0.0.1',
  password: 'password123',
  username: 'admin',
  origin: 'http://@127.0.0.1',
  href: 'http://admin:password123@@127.0.0.1/' }

Remediation

Upgrade url-parse to version 1.5.6 or higher.

References

medium severity

Authorization Bypass

  • Vulnerable module: url-parse
  • Introduced through: @ocariot/rabbitmq-client-node@1.6.2

Detailed paths

  • Introduced through: iot-tracking@ocariot/iot-tracking#b3bd6f518b070806ca26414a670c4afa91c7922e @ocariot/rabbitmq-client-node@1.6.2 amqp-client-node@1.0.11 amqplib@0.5.6 url-parse@1.4.7

Overview

url-parse is a Small footprint URL parser that works seamlessly across Node.js and browser environments.

Affected versions of this package are vulnerable to Authorization Bypass via the hostname field of a parsed URL, because "url-parse" is unable to find the correct hostname when no port number is provided in the URL.

PoC:

var Url = require('url-parse');
var PAYLOAD = "http://example.com:";

console.log(Url(PAYLOAD));

// Expected hostname: example.com
// Actual hostname by url-parse: example.com:

Output:

{
  slashes: true,
  protocol: 'http:',
  hash: '',
  query: '',
  pathname: '/',
  auth: '',
  host: 'example.com:',
  port: '',
  hostname: 'example.com:',
  password: '',
  username: '',
  origin: 'http://example.com:',
  href: 'http://example.com:/'
}

Remediation

Upgrade url-parse to version 1.5.8 or higher.

References

medium severity

Authorization Bypass Through User-Controlled Key

  • Vulnerable module: url-parse
  • Introduced through: @ocariot/rabbitmq-client-node@1.6.2

Detailed paths

  • Introduced through: iot-tracking@ocariot/iot-tracking#b3bd6f518b070806ca26414a670c4afa91c7922e @ocariot/rabbitmq-client-node@1.6.2 amqp-client-node@1.0.11 amqplib@0.5.6 url-parse@1.4.7

Overview

url-parse is a Small footprint URL parser that works seamlessly across Node.js and browser environments.

Affected versions of this package are vulnerable to Authorization Bypass Through User-Controlled Key due to incorrect conversion of @ in the protocol field of the HREF.

PoC:

parse = require('url-parse')

console.log(parse("http:@/127.0.0.1"))

Output:

{
  slashes: true,
  protocol: 'http:',
  hash: '',
  query: '',
  pathname: '/127.0.0.1',
  auth: '',
  host: '',
  port: '',
  hostname: '',
  password: '',
  username: '',
  origin: 'null',
  href: 'http:///127.0.0.1'
}

Remediation

Upgrade url-parse to version 1.5.7 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: mongoose
  • Introduced through: mongoose@5.8.2

Detailed paths

  • Introduced through: iot-tracking@ocariot/iot-tracking#b3bd6f518b070806ca26414a670c4afa91c7922e mongoose@5.8.2
    Remediation: Upgrade to mongoose@5.12.2.

Overview

mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.

Affected versions of this package are vulnerable to Prototype Pollution. The mongoose.Schema() function is subject to prototype pollution due to the recursively calling of Schema.prototype.add() function to add new items into the schema object. This vulnerability allows modification of the Object prototype.

PoC

mongoose = require('mongoose');
mongoose.version; //'5.12.0'
var malicious_payload = '{"__proto__":{"polluted":"HACKED"}}';
console.log('Before:', {}.polluted); // undefined
mongoose.Schema(JSON.parse(malicious_payload));
console.log('After:', {}.polluted); // HACKED

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mongoose to version 5.12.2 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: mpath
  • Introduced through: mongoose@5.8.2

Detailed paths

  • Introduced through: iot-tracking@ocariot/iot-tracking#b3bd6f518b070806ca26414a670c4afa91c7922e mongoose@5.8.2 mpath@0.6.0
    Remediation: Upgrade to mongoose@5.13.9.

Overview

mpath is a package that gets/sets javascript object values using MongoDB-like path notation.

Affected versions of this package are vulnerable to Prototype Pollution. A type confusion vulnerability can lead to a bypass of CVE-2018-16490. In particular, the condition ignoreProperties.indexOf(parts[i]) !== -1 returns -1 if parts[i] is ['__proto__']. This is because the method that has been called if the input is an array is Array.prototype.indexOf() and not String.prototype.indexOf(). They behave differently depending on the type of the input.

PoC

const mpath = require('mpath');
// mpath.set(['__proto__', 'polluted'], 'yes', {});
// console.log(polluted); // ReferenceError: polluted is not defined

mpath.set([['__proto__'], 'polluted'], 'yes', {});
console.log(polluted); // yes

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mpath to version 0.8.4 or higher.

References

medium severity

Improper Input Validation

  • Vulnerable module: url-parse
  • Introduced through: @ocariot/rabbitmq-client-node@1.6.2

Detailed paths

  • Introduced through: iot-tracking@ocariot/iot-tracking#b3bd6f518b070806ca26414a670c4afa91c7922e @ocariot/rabbitmq-client-node@1.6.2 amqp-client-node@1.0.11 amqplib@0.5.6 url-parse@1.4.7

Overview

url-parse is a Small footprint URL parser that works seamlessly across Node.js and browser environments.

Affected versions of this package are vulnerable to Improper Input Validation. It mishandles certain uses of backslash such as http:\/ and interprets the URI as a relative path.

Remediation

Upgrade url-parse to version 1.5.0 or higher.

References

medium severity

Open Redirect

  • Vulnerable module: url-parse
  • Introduced through: @ocariot/rabbitmq-client-node@1.6.2

Detailed paths

  • Introduced through: iot-tracking@ocariot/iot-tracking#b3bd6f518b070806ca26414a670c4afa91c7922e @ocariot/rabbitmq-client-node@1.6.2 amqp-client-node@1.0.11 amqplib@0.5.6 url-parse@1.4.7

Overview

url-parse is a Small footprint URL parser that works seamlessly across Node.js and browser environments.

Affected versions of this package are vulnerable to Open Redirect due to improper escaping of slash characters.

Remediation

Upgrade url-parse to version 1.5.2 or higher.

References