netreconlab/parse-hipaa-dashboard
Find, fix and prevent vulnerabilities in your code.
high severity
- Vulnerable module: markdown-it
- Introduced through: parse-dashboard@6.2.0
Detailed paths
-
Introduced through: parse-hipaa-dashboard@netreconlab/parse-hipaa-dashboard#55e8b23d718f210a99ab7f7042590a62ddc9624d › parse-dashboard@6.2.0 › graphiql@2.0.8 › markdown-it@12.3.2
-
Introduced through: parse-hipaa-dashboard@netreconlab/parse-hipaa-dashboard#55e8b23d718f210a99ab7f7042590a62ddc9624d › parse-dashboard@6.2.0 › graphiql@2.0.8 › @graphiql/react@0.13.7 › markdown-it@12.3.2
Overview
markdown-it is a modern pluggable markdown parser.
Affected versions of this package are vulnerable to Infinite loop in linkify inline rule when using malformed input.
Remediation
Upgrade markdown-it
to version 13.0.2 or higher.
References
high severity
- Vulnerable module: ws
- Introduced through: parse-dashboard@6.2.0
Detailed paths
-
Introduced through: parse-hipaa-dashboard@netreconlab/parse-hipaa-dashboard#55e8b23d718f210a99ab7f7042590a62ddc9624d › parse-dashboard@6.2.0 › parse@3.5.1 › ws@8.6.0
Overview
ws is a simple to use websocket client, server and console for node.js.
Affected versions of this package are vulnerable to Denial of Service (DoS) when the number of received headers exceed the server.maxHeadersCount
or request.maxHeadersCount
threshold.
Workaround
This issue can be mitigating by following these steps:
Reduce the maximum allowed length of the request headers using the
--max-http-header-size=size
and/or themaxHeaderSize
options so that no more headers than theserver.maxHeadersCount
limit can be sent.Set
server.maxHeadersCount
to 0 so that no limit is applied.
PoC
const http = require('http');
const WebSocket = require('ws');
const server = http.createServer();
const wss = new WebSocket.Server({ server });
server.listen(function () {
const chars = "!#$%&'*+-.0123456789abcdefghijklmnopqrstuvwxyz^_`|~".split('');
const headers = {};
let count = 0;
for (let i = 0; i < chars.length; i++) {
if (count === 2000) break;
for (let j = 0; j < chars.length; j++) {
const key = chars[i] + chars[j];
headers[key] = 'x';
if (++count === 2000) break;
}
}
headers.Connection = 'Upgrade';
headers.Upgrade = 'websocket';
headers['Sec-WebSocket-Key'] = 'dGhlIHNhbXBsZSBub25jZQ==';
headers['Sec-WebSocket-Version'] = '13';
const request = http.request({
headers: headers,
host: '127.0.0.1',
port: server.address().port
});
request.end();
});
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
ws
package
Remediation
Upgrade ws
to version 5.2.4, 6.2.3, 7.5.10, 8.17.1 or higher.
References
high severity
- Vulnerable module: crypto-js
- Introduced through: parse-dashboard@6.2.0
Detailed paths
-
Introduced through: parse-hipaa-dashboard@netreconlab/parse-hipaa-dashboard#55e8b23d718f210a99ab7f7042590a62ddc9624d › parse-dashboard@6.2.0 › parse@3.5.1 › crypto-js@4.1.1
Overview
crypto-js is a library of crypto standards.
Affected versions of this package are vulnerable to Use of Weak Hash due to inadequate security settings in the PBKDF2
configuration, which uses insecure SHA1 and has a low iteration count of 1. These insecure settings allow attackers to perform brute-force attacks when PBKDF2
is used with the default parameters.
No information is directly exposed when a hash is generated, regardless of whether the PBKDF2 function is in the vulnerable configuration or not. However, it may be possible to recover the original data, more or less easily depending on the configured parameters, using a brute force attack. This is a low impact on the confidentiality of the protected data, which are in a different scope than the vulnerable package.
The attacker similarly may be able to modify some data which is meant to be protected by the vulnerable package - most commonly when it is used for signature verification. This would require a subsequent exploitation, such as forcing a hash collision via length extension attack. The integrity of the data is therefore compromised, but the quantity and targeting of that data is not fully in the attacker's control, yielding a low integrity impact.
Notes
This vulnerability is related to https://security.snyk.io/vuln/SNYK-JS-CRYPTOES-6032390 in crypto-es.
According to the
crypto-js
maintainer: "Active development of CryptoJS has been discontinued. This library is no longer maintained." It is recommended to use the Node.js nativecrypto
module.
Workaround
This vulnerability can be avoided by setting PBKDF2
to use SHA-256 instead of SHA-1 and increasing the number of iterations to a sufficiently high value depending on the intended use.
See, for example, the OWASP PBKDF2 Cheat Sheet for recommendations.
Changelog:
2023-10-24 - Initial publication
2023-10-25 - Added fixed version, updated references, separated crypto-es, description changes, updated CVSS, added CVE ID
2023-11-07 - Re-assessed CVSS following a CVSS publication on NVD. No changes made to CVSS.
2024-01-11 - Revised CVSS and description after additional deeper investigation, to reflect the details of the severity assessment
Remediation
Upgrade crypto-js
to version 4.2.0 or higher.
References
medium severity
new
- Vulnerable module: @babel/runtime-corejs3
- Introduced through: parse-dashboard@6.2.0
Detailed paths
-
Introduced through: parse-hipaa-dashboard@netreconlab/parse-hipaa-dashboard#55e8b23d718f210a99ab7f7042590a62ddc9624d › parse-dashboard@6.2.0 › parse@3.5.1 › @babel/runtime-corejs3@7.17.8
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) in the replace()
method in wrapRegExp.js
. An attacker can cause degradation in performance by supplying input strings that exploit the quadratic complexity of the replacement algorithm.
This is only exploitable when all of the following conditions are met:
The code passes untrusted strings in the second argument to
.replace()
.The compiled regular expressions being applied contain named capture groups.
In the case of @babel/preset-env
, if the targets
option is in use the application will be vulnerable under either of the following conditions:
A browser older than Chrome 64, Opera 71, Edge 79, Firefox 78, Safari 11.1, or Node.js 10 is used when processing named capture groups.
A browser older than Chrome/Edge 126, Opera 112, Firefox 129, Safari 17.4, or Node.js 23 is used when processing duplicated named capture groups.
Note: The project maintainers advise that "just updating your Babel dependencies is not enough: you will also need to re-compile your code."
Workaround
This vulnerability can be avoided by filtering out input containing a $<
that is not followed by a >
.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade @babel/runtime-corejs3
to version 7.26.10, 8.0.0-alpha.17 or higher.
References
medium severity
- Vulnerable module: cookie
- Introduced through: parse-dashboard@6.2.0
Detailed paths
-
Introduced through: parse-hipaa-dashboard@netreconlab/parse-hipaa-dashboard#55e8b23d718f210a99ab7f7042590a62ddc9624d › parse-dashboard@6.2.0 › csurf@1.11.0 › cookie@0.4.0
Overview
Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via the cookie name
, path
, or domain
, which can be used to set unexpected values to other cookie fields.
Workaround
Users who are not able to upgrade to the fixed version should avoid passing untrusted or arbitrary values for the cookie fields and ensure they are set by the application instead of user input.
Details
A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade cookie
to version 0.7.0 or higher.
References
medium severity
- Vulnerable module: passport
- Introduced through: parse-dashboard@6.2.0
Detailed paths
-
Introduced through: parse-hipaa-dashboard@netreconlab/parse-hipaa-dashboard#55e8b23d718f210a99ab7f7042590a62ddc9624d › parse-dashboard@6.2.0 › passport@0.5.3
Overview
passport is a Simple, unobtrusive authentication for Node.js.
Affected versions of this package are vulnerable to Session Fixation. When a user logs in or logs out, the session is regenerated instead of being closed.
Remediation
Upgrade passport
to version 0.6.0 or higher.