Vulnerabilities

5 via 5 paths

Dependencies

8

Source

GitHub

Commit

00476356

Find, fix and prevent vulnerabilities in your code.

Severity
  • 1
  • 1
  • 3
Status
  • 5
  • 0
  • 0

critical severity

Improper Input Validation

  • Vulnerable module: xmldom
  • Introduced through: xmldom@0.3.0

Detailed paths

  • Introduced through: iobroker.lgtv12@mijado/ioBroker.lgtv12#00476356c2c7dde73abb0c720968f8e4d71640bd xmldom@0.3.0

Overview

xmldom is an A pure JavaScript W3C standard-based (XML DOM Level 2 Core) DOMParser and XMLSerializer module.

Affected versions of this package are vulnerable to Improper Input Validation due to parsing XML that is not well-formed, and contains multiple top-level elements. All the root nodes are being added to the childNodes collection of the Document, without reporting or throwing any error.

Workarounds

One of the following approaches might help, depending on your use case:

  1. Instead of searching for elements in the whole DOM, only search in the documentElement.

  2. Reject a document with a document that has more than 1 childNode.

PoC

var DOMParser = require('xmldom').DOMParser;
var xmlData = '<?xml version="1.0" encoding="UTF-8"?>\n' +
'<root>\n' +
'  <branch girth="large">\n' +
'    <leaf color="green" />\n' +
'  </branch>\n' +
'</root>\n' +
'<root>\n' +
'  <branch girth="twig">\n' +
'    <leaf color="gold" />\n' +
'  </branch>\n' +
'</root>\n';
var xmlDOM = new DOMParser().parseFromString(xmlData);
console.log(xmlDOM.toString());

This will result with the following output:

<?xml version="1.0" encoding="UTF-8"?><root>
  <branch girth="large">
    <leaf color="green"/>
  </branch>
</root>
<root>
  <branch girth="twig">
    <leaf color="gold"/>
  </branch>
</root>

Remediation

There is no fixed version for xmldom.

References

high severity

Prototype Pollution

  • Vulnerable module: xmldom
  • Introduced through: xmldom@0.3.0

Detailed paths

  • Introduced through: iobroker.lgtv12@mijado/ioBroker.lgtv12#00476356c2c7dde73abb0c720968f8e4d71640bd xmldom@0.3.0

Overview

xmldom is an A pure JavaScript W3C standard-based (XML DOM Level 2 Core) DOMParser and XMLSerializer module.

Affected versions of this package are vulnerable to Prototype Pollution through the copy() function in dom.js. Exploiting this vulnerability is possible via the p variable.

DISPUTED This vulnerability has been disputed by the maintainers of the package. Currently the only viable exploit that has been demonstrated is to pollute the target object (rather then the global object which is generally the case for Prototype Pollution vulnerabilities) and it is yet unclear if this limited attack vector exposes any vulnerability in the context of this package.

See the linked GitHub Issue for full details on the discussion around the legitimacy and potential revocation of this vulnerability.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

There is no fixed version for xmldom.

References

medium severity

Improper Input Validation

  • Vulnerable module: xmldom
  • Introduced through: xmldom@0.3.0

Detailed paths

  • Introduced through: iobroker.lgtv12@mijado/ioBroker.lgtv12#00476356c2c7dde73abb0c720968f8e4d71640bd xmldom@0.3.0

Overview

xmldom is an A pure JavaScript W3C standard-based (XML DOM Level 2 Core) DOMParser and XMLSerializer module.

Affected versions of this package are vulnerable to Improper Input Validation. It does not correctly escape special characters when serializing elements are removed from their ancestor. This may lead to unexpected syntactic changes during XML processing in some downstream applications.

Note: Customers who use "xmldom" package, should use "@xmldom/xmldom" instead, as "xmldom" is no longer maintained.

Remediation

There is no fixed version for xmldom.

References

medium severity

XML External Entity (XXE) Injection

  • Vulnerable module: xmldom
  • Introduced through: xmldom@0.3.0

Detailed paths

  • Introduced through: iobroker.lgtv12@mijado/ioBroker.lgtv12#00476356c2c7dde73abb0c720968f8e4d71640bd xmldom@0.3.0
    Remediation: Upgrade to xmldom@0.5.0.

Overview

xmldom is an A pure JavaScript W3C standard-based (XML DOM Level 2 Core) DOMParser and XMLSerializer module.

Affected versions of this package are vulnerable to XML External Entity (XXE) Injection. Does not correctly preserve system identifiers, FPIs or namespaces when repeatedly parsing and serializing maliciously crafted documents.

Details

XXE Injection is a type of attack against an application that parses XML input. XML is a markup language that defines a set of rules for encoding documents in a format that is both human-readable and machine-readable. By default, many XML processors allow specification of an external entity, a URI that is dereferenced and evaluated during XML processing. When an XML document is being parsed, the parser can make a request and include the content at the specified URI inside of the XML document.

Attacks can include disclosing local files, which may contain sensitive data such as passwords or private user data, using file: schemes or relative paths in the system identifier.

For example, below is a sample XML document, containing an XML element- username.

<xml>
<?xml version="1.0" encoding="ISO-8859-1"?>
   <username>John</username>
</xml>

An external XML entity - xxe, is defined using a system identifier and present within a DOCTYPE header. These entities can access local or remote content. For example the below code contains an external XML entity that would fetch the content of /etc/passwd and display it to the user rendered by username.

<xml>
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
   <!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
   <username>&xxe;</username>
</xml>

Other XXE Injection attacks can access local resources that may not stop returning data, possibly impacting application availability and leading to Denial of Service.

Remediation

Upgrade xmldom to version 0.5.0 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: xml2js
  • Introduced through: xml2js@0.4.23

Detailed paths

  • Introduced through: iobroker.lgtv12@mijado/ioBroker.lgtv12#00476356c2c7dde73abb0c720968f8e4d71640bd xml2js@0.4.23
    Remediation: Upgrade to xml2js@0.5.0.

Overview

Affected versions of this package are vulnerable to Prototype Pollution due to allowing an external attacker to edit or add new properties to an object. This is possible because the application does not properly validate incoming JSON keys, thus allowing the __proto__ property to be edited.

PoC

var parseString = require('xml2js').parseString;

let normal_user_request    = "<role>admin</role>";
let malicious_user_request = "<__proto__><role>admin</role></__proto__>";

const update_user = (userProp) => {
    // A user cannot alter his role. This way we prevent privilege escalations.
    parseString(userProp, function (err, user) {
        if(user.hasOwnProperty("role") && user?.role.toLowerCase() === "admin") {
            console.log("Unauthorized Action");
        } else {
            console.log(user?.role[0]);
        }
    });
}

update_user(normal_user_request);
update_user(malicious_user_request);

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade xml2js to version 0.5.0 or higher.

References