Find, fix and prevent vulnerabilities in your code.
high severity
- Vulnerable module: @remix-run/node
- Introduced through: @remix-run/serve@1.19.3 and @remix-run/vercel@1.19.3
Detailed paths
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/serve@1.19.3 › @remix-run/node@1.19.3Remediation: Upgrade to @remix-run/serve@2.17.2.
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/vercel@1.19.3 › @remix-run/node@1.19.3
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/serve@1.19.3 › @remix-run/express@1.19.3 › @remix-run/node@1.19.3Remediation: Upgrade to @remix-run/serve@2.17.2.
Overview
@remix-run/node is a Node.js platform abstractions for Remix
Affected versions of this package are vulnerable to Directory Traversal via the createFileSessionStorage() function. An attacker can access or modify files outside the intended session file directory by crafting a malicious session cookie when unsigned cookies are used. The attack's success depends on the web server process having sufficient file system permissions.
Details
A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.
Directory Traversal vulnerabilities can be generally divided into two types:
- Information Disclosure: Allows the attacker to gain information about the folder structure or read the contents of sensitive files on the system.
st is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public route.
If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.
curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa
Note %2e is the URL encoded version of . (dot).
- Writing arbitrary files: Allows the attacker to create or replace existing files. This type of vulnerability is also known as
Zip-Slip.
One way to achieve this is by using a malicious zip archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.
The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:
2018-04-15 22:04:29 ..... 19 19 good.txt
2018-04-15 22:04:42 ..... 20 20 ../../../../../../root/.ssh/authorized_keys
Remediation
Upgrade @remix-run/node to version 2.17.2 or higher.
References
high severity
- Vulnerable module: @remix-run/router
- Introduced through: @remix-run/react@1.19.3, @remix-run/serve@1.19.3 and others
Detailed paths
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/react@1.19.3 › @remix-run/router@1.7.2Remediation: Upgrade to @remix-run/react@2.17.4.
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/react@1.19.3 › react-router-dom@6.14.2 › @remix-run/router@1.7.2Remediation: Upgrade to @remix-run/react@2.17.4.
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/react@1.19.3 › react-router-dom@6.14.2 › react-router@6.14.2 › @remix-run/router@1.7.2Remediation: Upgrade to @remix-run/react@2.17.4.
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/serve@1.19.3 › @remix-run/node@1.19.3 › @remix-run/server-runtime@1.19.3 › @remix-run/router@1.7.2Remediation: Upgrade to @remix-run/serve@2.17.4.
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/vercel@1.19.3 › @remix-run/node@1.19.3 › @remix-run/server-runtime@1.19.3 › @remix-run/router@1.7.2
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/serve@1.19.3 › @remix-run/express@1.19.3 › @remix-run/node@1.19.3 › @remix-run/server-runtime@1.19.3 › @remix-run/router@1.7.2Remediation: Upgrade to @remix-run/serve@2.17.4.
Overview
@remix-run/router is a Nested/Data-driven/Framework-agnostic Routing
Affected versions of this package are vulnerable to Cross-site Scripting (XSS) in the navigation redirect process for loaders or actions in Framework Mode, Data Mode, or the unstable RSC modes. An attacker can execute arbitrary JavaScript code in the context of the user's browser by supplying a crafted URL that is used as a redirect target.
Note:
This issue does not impact applications using Declarative Mode <BrowserRouter>.
Details
Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as < and > can be coded as > in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
| Type | Origin | Description |
|---|---|---|
| Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
| Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
| DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
| Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?,&,/,<,>and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade @remix-run/router to version 1.23.2 or higher.
References
high severity
- Vulnerable module: @remix-run/router
- Introduced through: @remix-run/react@1.19.3, @remix-run/serve@1.19.3 and others
Detailed paths
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/react@1.19.3 › @remix-run/router@1.7.2Remediation: Upgrade to @remix-run/react@2.17.4.
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/react@1.19.3 › react-router-dom@6.14.2 › @remix-run/router@1.7.2Remediation: Upgrade to @remix-run/react@2.17.4.
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/react@1.19.3 › react-router-dom@6.14.2 › react-router@6.14.2 › @remix-run/router@1.7.2Remediation: Upgrade to @remix-run/react@2.17.4.
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/serve@1.19.3 › @remix-run/node@1.19.3 › @remix-run/server-runtime@1.19.3 › @remix-run/router@1.7.2Remediation: Upgrade to @remix-run/serve@2.17.4.
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/vercel@1.19.3 › @remix-run/node@1.19.3 › @remix-run/server-runtime@1.19.3 › @remix-run/router@1.7.2
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/serve@1.19.3 › @remix-run/express@1.19.3 › @remix-run/node@1.19.3 › @remix-run/server-runtime@1.19.3 › @remix-run/router@1.7.2Remediation: Upgrade to @remix-run/serve@2.17.4.
Overview
@remix-run/router is a Nested/Data-driven/Framework-agnostic Routing
Affected versions of this package are vulnerable to Open Redirect via the resolvePath() function when used with navigate, <Link>, or redirect. An attacker can cause the application to redirect users to external, potentially malicious URLs by supplying crafted paths.
Note:
This is only exploitable if untrusted content is passed into navigation paths in the application code.
Remediation
Upgrade @remix-run/router to version 1.23.1 or higher.
References
high severity
- Vulnerable module: react-router
- Introduced through: @remix-run/react@1.19.3
Detailed paths
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/react@1.19.3 › react-router-dom@6.14.2 › react-router@6.14.2Remediation: Upgrade to @remix-run/react@2.17.4.
Overview
Affected versions of this package are vulnerable to Open Redirect via the resolvePath() function when used with navigate, <Link>, or redirect. An attacker can cause the application to redirect users to external, potentially malicious URLs by supplying crafted paths.
Note:
This is only exploitable if untrusted content is passed into navigation paths in the application code.
Remediation
Upgrade react-router to version 6.30.2, 7.9.6 or higher.
References
medium severity
- Vulnerable module: @remix-run/server-runtime
- Introduced through: @remix-run/serve@1.19.3 and @remix-run/vercel@1.19.3
Detailed paths
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/serve@1.19.3 › @remix-run/node@1.19.3 › @remix-run/server-runtime@1.19.3Remediation: Upgrade to @remix-run/serve@2.17.3.
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/vercel@1.19.3 › @remix-run/node@1.19.3 › @remix-run/server-runtime@1.19.3
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/serve@1.19.3 › @remix-run/express@1.19.3 › @remix-run/node@1.19.3 › @remix-run/server-runtime@1.19.3Remediation: Upgrade to @remix-run/serve@2.17.3.
Overview
@remix-run/server-runtime is a Server runtime for Remix
Affected versions of this package are vulnerable to Cross-site Request Forgery (CSRF) due to the improper origin checks of UI route submissions in server-side route action handlers in Framework Mode. An attacker can execute unauthorized actions by tricking a user into submitting a crafted POST request to a UI route.
Note:
This issue does not impact applications using Declarative Mode <BrowserRouter> or Data Mode createBrowserRouter/<RouterProvider>.
Remediation
Upgrade @remix-run/server-runtime to version 2.17.3 or higher.
References
medium severity
- Vulnerable module: @remix-run/react
- Introduced through: @remix-run/react@1.19.3
Detailed paths
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/react@1.19.3Remediation: Upgrade to @remix-run/react@2.17.3.
Overview
@remix-run/react is a React DOM bindings for Remix
Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via the ScrollRestoration API when using the getKey or storageKey props during server-side rendering in Framework Mode. An attacker can execute arbitrary JavaScript code by supplying untrusted content to generate the keys. This is only exploitable if server-side rendering is enabled in Framework Mode and untrusted input is used for key generation.
Note:
This issue does not impact applications using Declarative Mode <BrowserRouter> or Data Mode createBrowserRouter/<RouterProvider> and server-side rendering in Framework Mode is disabled.
Details
Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as < and > can be coded as > in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
| Type | Origin | Description |
|---|---|---|
| Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
| Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
| DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
| Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?,&,/,<,>and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade @remix-run/react to version 2.17.3 or higher.
References
medium severity
- Vulnerable module: cookie
- Introduced through: @remix-run/serve@1.19.3 and @remix-run/vercel@1.19.3
Detailed paths
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/serve@1.19.3 › @remix-run/node@1.19.3 › @remix-run/server-runtime@1.19.3 › cookie@0.4.2Remediation: Upgrade to @remix-run/serve@2.16.4.
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/vercel@1.19.3 › @remix-run/node@1.19.3 › @remix-run/server-runtime@1.19.3 › cookie@0.4.2
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/serve@1.19.3 › @remix-run/express@1.19.3 › @remix-run/node@1.19.3 › @remix-run/server-runtime@1.19.3 › cookie@0.4.2Remediation: Upgrade to @remix-run/serve@2.16.4.
Overview
Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via the cookie name, path, or domain, which can be used to set unexpected values to other cookie fields.
Workaround
Users who are not able to upgrade to the fixed version should avoid passing untrusted or arbitrary values for the cookie fields and ensure they are set by the application instead of user input.
Details
Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as < and > can be coded as > in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
| Type | Origin | Description |
|---|---|---|
| Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
| Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
| DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
| Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?,&,/,<,>and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade cookie to version 0.7.0 or higher.
References
medium severity
- Vulnerable module: @remix-run/react
- Introduced through: @remix-run/react@1.19.3
Detailed paths
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › @remix-run/react@1.19.3Remediation: Upgrade to @remix-run/react@2.17.1.
Overview
@remix-run/react is a React DOM bindings for Remix
Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via the Meta API in Framework Mode when generating script:ld+json tags during server-side rendering with untrusted content. An attacker can execute arbitrary JavaScript code by injecting malicious input into the metadata generation process.
Note:
This issue does not impact applications using Declarative Mode <BrowserRouter> or Data Mode createBrowserRouter/<RouterProvider>.
Details
Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as < and > can be coded as > in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
| Type | Origin | Description |
|---|---|---|
| Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
| Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
| DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
| Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?,&,/,<,>and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade @remix-run/react to version 2.17.1 or higher.
References
medium severity
- Vulnerable module: graphql
- Introduced through: graphql@16.3.0
Detailed paths
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › graphql@16.3.0Remediation: Upgrade to graphql@16.8.1.
Overview
Affected versions of this package are vulnerable to Denial of Service (DoS) due to insufficient checks in the OverlappingFieldsCanBeMergedRule.ts file when parsing large queries. This vulnerability allows an attacker to degrade system performance.
Note: It was not proven that this vulnerability can crash the process.
PoC
pnpm install && pnpm startRun
curl \
--data "{\"query\":\"{ $(python3 -c "print('%s' % ('__typename ' * 1000))")}\"}" \
--header 'Content-Type: application/json' \
--include \
--request POST \
https://example.com/graphql
This will take ~2.5s and increase to ~21s if you change the number of __typename to 3000
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
wspackage
Remediation
Upgrade graphql to version 16.8.1 or higher.
References
medium severity
- Vulnerable module: markdown-to-jsx
- Introduced through: markdown-to-jsx@7.1.7
Detailed paths
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › markdown-to-jsx@7.1.7Remediation: Upgrade to markdown-to-jsx@7.4.0.
Overview
markdown-to-jsx is a lightweight, customizable React markdown component.
Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via the src property due to improper input sanitization. An attacker can execute arbitrary code by injecting a malicious iframe element in the markdown.
PoC
// 1. npx create-react-app local-react
// 2. cd local-react
// 3. npm install markdown-to-jsx=7.3.2
// 4. Replace the content of App.js with the content of this file
// 5. npm start
import React from 'react';
import Markdown from 'markdown-to-jsx';
const markdown = `<iframe src="javascript:alert()"></iframe>`;
function App() {
return (
<div className="App">
<Markdown>
{markdown}
</Markdown>
</div>
);
}
export default App;
Details
Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as < and > can be coded as > in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
| Type | Origin | Description |
|---|---|---|
| Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
| Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
| DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
| Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?,&,/,<,>and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade markdown-to-jsx to version 7.4.0 or higher.
References
medium severity
- Vulnerable module: markdown-to-jsx
- Introduced through: markdown-to-jsx@7.1.7
Detailed paths
-
Introduced through: mhaidarhanif-web@mhaidarhanif/mhaidarhanif-web#0b52f81b2f3d78695196a9ca264f5f20648c410b › markdown-to-jsx@7.1.7Remediation: Upgrade to markdown-to-jsx@7.2.0.
Overview
markdown-to-jsx is a lightweight, customizable React markdown component.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). Catastrophic backtracking in the BREAK_THEMATIC_R regex causes parsing to hang on non-matching input with repeating asterisks
PoC
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
SOME TEXT
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
or
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade markdown-to-jsx to version 7.2.0 or higher.