Vulnerabilities

44 via 247 paths

Dependencies

905

Source

GitHub

Commit

0aa30e68

Find, fix and prevent vulnerabilities in your code.

Severity
  • 2
  • 16
  • 24
  • 2
Status
  • 44
  • 0
  • 0

critical severity

SQL Injection

  • Vulnerable module: sequelize
  • Introduced through: sequelize@4.44.4

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b sequelize@4.44.4
    Remediation: Upgrade to sequelize@6.19.1.

Overview

sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.

Affected versions of this package are vulnerable to SQL Injection via the replacements statement. It allowed a malicious actor to pass dangerous values such as OR true; DROP TABLE users through replacements which would result in arbitrary SQL execution.

Remediation

Upgrade sequelize to version 6.19.1 or higher.

References

critical severity

Incomplete List of Disallowed Inputs

  • Vulnerable module: babel-traverse
  • Introduced through: babel-core@6.26.3, babel-register@6.26.0 and others

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-register@6.26.0 babel-core@6.26.3 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-parameters@6.24.1 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-register@6.26.0 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-computed-properties@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-systemjs@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-parameters@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-parameters@6.24.1 babel-helper-call-delegate@6.24.1 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-register@6.26.0 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-exponentiation-operator@6.24.1 babel-helper-builder-binary-assignment-operator-visitor@6.24.1 babel-helper-explode-assignable-expression@6.24.1 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0

Overview

Affected versions of this package are vulnerable to Incomplete List of Disallowed Inputs when using plugins that rely on the path.evaluate() or path.evaluateTruthy() internal Babel methods.

Note:

This is only exploitable if the attacker uses known affected plugins such as @babel/plugin-transform-runtime, @babel/preset-env when using its useBuiltIns option, and any "polyfill provider" plugin that depends on @babel/helper-define-polyfill-provider. No other plugins under the @babel/ namespace are impacted, but third-party plugins might be.

Users that only compile trusted code are not impacted.

Workaround

Users who are unable to upgrade the library can upgrade the affected plugins instead, to avoid triggering the vulnerable code path in affected @babel/traverse.

Remediation

There is no fixed version for babel-traverse.

References

high severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: ip
  • Introduced through: mailgun-js@0.18.0

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b mailgun-js@0.18.0 proxy-agent@3.0.3 socks-proxy-agent@4.0.2 socks@2.3.3 ip@1.1.5
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b mailgun-js@0.18.0 proxy-agent@3.0.3 pac-proxy-agent@3.0.1 socks-proxy-agent@4.0.2 socks@2.3.3 ip@1.1.5

Overview

ip is a Node library.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) via the isPublic function, by failing to identify hex-encoded 0x7f.1 as equivalent to the private addess 127.0.0.1. An attacker can expose sensitive information, interact with internal services, or exploit other vulnerabilities within the network by exploiting this vulnerability.

PoC

var ip = require('ip');

console.log(ip.isPublic("0x7f.1"));
//This returns true. It should be false because 0x7f.1 == 127.0.0.1 == 0177.1

Remediation

Upgrade ip to version 1.1.9, 2.0.1 or higher.

References

high severity

Improper Filtering of Special Elements

  • Vulnerable module: sequelize
  • Introduced through: sequelize@4.44.4

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b sequelize@4.44.4
    Remediation: Upgrade to sequelize@6.29.0.

Overview

sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.

Affected versions of this package are vulnerable to Improper Filtering of Special Elements due to attributes not being escaped if they included ( and ), or were equal to * and were split if they included the character ..

Remediation

Upgrade sequelize to version 6.29.0 or higher.

References

high severity

Remote Code Execution (RCE)

  • Vulnerable module: pac-resolver
  • Introduced through: mailgun-js@0.18.0

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b mailgun-js@0.18.0 proxy-agent@3.0.3 pac-proxy-agent@3.0.1 pac-resolver@3.0.0

Overview

Affected versions of this package are vulnerable to Remote Code Execution (RCE). This can occur when used with untrusted input, due to unsafe PAC file handling.

In order to exploit this vulnerability in practice, this either requires an attacker on your local network, a specific vulnerable configuration, or some second vulnerability that allows an attacker to set your config values.

NOTE: The fix for this vulnerability is applied in the node-degenerator library, a dependency is written by the same maintainer.

PoC

const pac = require('pac-resolver');

// Should keep running forever (if not vulnerable):
setInterval(() => {
    console.log("Still running");
}, 1000);

// Parsing a malicious PAC file unexpectedly executes unsandboxed code:
pac(`
    // Real PAC config:
    function FindProxyForURL(url, host) {
        return "DIRECT";
    }

    // But also run arbitrary code:
    var f = this.constructor.constructor(\`
        // Running outside the sandbox:
        console.log('Read env vars:', process.env);
        console.log('!!! PAC file is running arbitrary code !!!');
        console.log('Can read & could exfiltrate env vars ^');
        console.log('Can kill parsing process, like so:');
        process.exit(100); // Kill the vulnerable process
        // etc etc
    \`);

    f();

Remediation

Upgrade pac-resolver to version 5.0.0 or higher.

References

high severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: netmask
  • Introduced through: mailgun-js@0.18.0

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b mailgun-js@0.18.0 proxy-agent@3.0.3 pac-proxy-agent@3.0.1 pac-resolver@3.0.0 netmask@1.0.6

Overview

netmask is a library to parse IPv4 CIDR blocks.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF). It incorrectly evaluates individual IPv4 octets that contain octal strings as left-stripped integers, leading to an inordinate attack surface on hundreds of thousands of projects that rely on netmask to filter or evaluate IPv4 block ranges, both inbound and outbound.

For example, a remote unauthenticated attacker can request local resources using input data 0177.0.0.1 (127.0.0.1), which netmask evaluates as the public IP 177.0.0.1. Contrastingly, a remote authenticated or unauthenticated attacker can input the data 0127.0.0.01 (87.0.0.1) as localhost, yet the input data is a public IP and can potentially cause local and remote file inclusion (LFI/RFI). A remote authenticated or unauthenticated attacker can bypass packages that rely on netmask to filter IP address blocks to reach intranets, VPNs, containers, adjacent VPC instances, or LAN hosts, using input data such as 012.0.0.1 (10.0.0.1), which netmask evaluates as 12.0.0.1 (public).

NOTE: This vulnerability has also been identified as: CVE-2021-29418

Remediation

Upgrade netmask to version 2.0.1 or higher.

References

high severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: netmask
  • Introduced through: mailgun-js@0.18.0

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b mailgun-js@0.18.0 proxy-agent@3.0.3 pac-proxy-agent@3.0.1 pac-resolver@3.0.0 netmask@1.0.6

Overview

netmask is a library to parse IPv4 CIDR blocks.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF). It incorrectly evaluates individual IPv4 octets that contain octal strings as left-stripped integers, leading to an inordinate attack surface on hundreds of thousands of projects that rely on netmask to filter or evaluate IPv4 block ranges, both inbound and outbound.

For example, a remote unauthenticated attacker can request local resources using input data 0177.0.0.1 (127.0.0.1), which netmask evaluates as the public IP 177.0.0.1. Contrastingly, a remote authenticated or unauthenticated attacker can input the data 0127.0.0.01 (87.0.0.1) as localhost, yet the input data is a public IP and can potentially cause local and remote file inclusion (LFI/RFI). A remote authenticated or unauthenticated attacker can bypass packages that rely on netmask to filter IP address blocks to reach intranets, VPNs, containers, adjacent VPC instances, or LAN hosts, using input data such as 012.0.0.1 (10.0.0.1), which netmask evaluates as 12.0.0.1 (public).

NOTE: This vulnerability has also been identified as: CVE-2021-28918

Remediation

Upgrade netmask to version 2.0.1 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: ansi-regex
  • Introduced through: pm2@2.10.4, run-sequence@2.2.1 and others

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b run-sequence@2.2.1 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b run-sequence@2.2.1 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4 cli-table-redemption@1.0.1 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4 cli-table-redemption@1.0.1 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-register@6.26.0 babel-core@6.26.3 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-register@6.26.0 babel-core@6.26.3 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 gulp-cli@2.3.0 yargs@7.1.2 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to gulp@5.0.0.
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 gulp-cli@2.3.0 yargs@7.1.2 cliui@3.2.0 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to gulp@5.0.0.
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-register@6.26.0 babel-core@6.26.3 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-parameters@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-register@6.26.0 babel-core@6.26.3 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-parameters@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 gulp-cli@2.3.0 yargs@7.1.2 cliui@3.2.0 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to gulp@5.0.0.
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 gulp-cli@2.3.0 yargs@7.1.2 cliui@3.2.0 wrap-ansi@2.1.0 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to gulp@5.0.0.
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-register@6.26.0 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-computed-properties@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-systemjs@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-parameters@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-parameters@6.24.1 babel-helper-call-delegate@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-register@6.26.0 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-computed-properties@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-systemjs@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-parameters@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-parameters@6.24.1 babel-helper-call-delegate@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 gulp-cli@2.3.0 yargs@7.1.2 cliui@3.2.0 wrap-ansi@2.1.0 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to gulp@5.0.0.
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-register@6.26.0 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-exponentiation-operator@6.24.1 babel-helper-builder-binary-assignment-operator-visitor@6.24.1 babel-helper-explode-assignable-expression@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-register@6.26.0 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-exponentiation-operator@6.24.1 babel-helper-builder-binary-assignment-operator-visitor@6.24.1 babel-helper-explode-assignable-expression@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to the sub-patterns [[\\]()#;?]* and (?:;[-a-zA-Z\\d\\/#&.:=?%@~_]*)*.

PoC

import ansiRegex from 'ansi-regex';

for(var i = 1; i <= 50000; i++) {
    var time = Date.now();
    var attack_str = "\u001B["+";".repeat(i*10000);
    ansiRegex().test(attack_str)
    var time_cost = Date.now() - time;
    console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade ansi-regex to version 3.0.1, 4.1.1, 5.0.1, 6.0.1 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: dicer
  • Introduced through: multer@1.4.4

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b multer@1.4.4 busboy@0.2.14 dicer@0.2.5

Overview

Affected versions of this package are vulnerable to Denial of Service (DoS). A malicious attacker can send a modified form to server, and crash the nodejs service. An attacker could sent the payload again and again so that the service continuously crashes.

PoC:

    fetch('form-image', {
      method: 'POST',
      headers: {
        ['content-type']: 'multipart/form-data; boundary=----WebKitFormBoundaryoo6vortfDzBsDiro',
        ['content-length']: '145',
        host: '127.0.0.1:8000',
        connection: 'keep-alive',
      },
      body: '------WebKitFormBoundaryoo6vortfDzBsDiro\r\n Content-Disposition: form-data; name="bildbeschreibung"\r\n\r\n\r\n------WebKitFormBoundaryoo6vortfDzBsDiro--'
    });

Remediation

There is no fixed version for dicer.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: engine.io
  • Introduced through: socket.io@2.5.0

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b socket.io@2.5.0 engine.io@3.6.1
    Remediation: Upgrade to socket.io@3.0.0.

Overview

engine.io is a realtime engine behind Socket.IO. It provides the foundation of a bidirectional connection between client and server

Affected versions of this package are vulnerable to Denial of Service (DoS) via a POST request to the long polling transport.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade engine.io to version 4.0.0 or higher.

References

high severity

Prototype Poisoning

  • Vulnerable module: qs
  • Introduced through: body-parser@1.18.2

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b body-parser@1.18.2 qs@6.5.1
    Remediation: Upgrade to body-parser@1.19.2.

Overview

qs is a querystring parser that supports nesting and arrays, with a depth limit.

Affected versions of this package are vulnerable to Prototype Poisoning which allows attackers to cause a Node process to hang, processing an Array object whose prototype has been replaced by one with an excessive length value.

Note: In many typical Express use cases, an unauthenticated remote attacker can place the attack payload in the query string of the URL that is used to visit the application, such as a[__proto__]=b&a[__proto__]&a[length]=100000000.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade qs to version 6.2.4, 6.3.3, 6.4.1, 6.5.3, 6.6.1, 6.7.3, 6.8.3, 6.9.7, 6.10.3 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: semver
  • Introduced through: pg@7.18.2

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pg@7.18.2 semver@4.3.2
    Remediation: Upgrade to pg@8.4.0.

Overview

semver is a semantic version parser used by npm.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the function new Range, when untrusted user data is provided as a range.

PoC


const semver = require('semver')
const lengths_2 = [2000, 4000, 8000, 16000, 32000, 64000, 128000]

console.log("n[+] Valid range - Test payloads")
for (let i = 0; i =1.2.3' + ' '.repeat(lengths_2[i]) + '<1.3.0';
const start = Date.now()
semver.validRange(value)
// semver.minVersion(value)
// semver.maxSatisfying(["1.2.3"], value)
// semver.minSatisfying(["1.2.3"], value)
// new semver.Range(value, {})

const end = Date.now();
console.log('length=%d, time=%d ms', value.length, end - start);
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade semver to version 5.7.2, 6.3.1, 7.5.2 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: unset-value
  • Introduced through: gulp-load-plugins@1.6.0, pm2@2.10.4 and others

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp-load-plugins@1.6.0 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp-load-plugins@1.6.0 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4 chokidar@2.1.8 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp-load-plugins@1.6.0 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp-load-plugins@1.6.0 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp-load-plugins@1.6.0 findup-sync@3.0.0 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp-load-plugins@1.6.0 findup-sync@3.0.0 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 glob-watcher@5.0.5 chokidar@2.1.8 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp-load-plugins@1.6.0 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp-load-plugins@1.6.0 findup-sync@3.0.0 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp-load-plugins@1.6.0 findup-sync@3.0.0 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 glob-watcher@5.0.5 anymatch@2.0.0 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 gulp-cli@2.3.0 matchdep@2.0.0 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 glob-watcher@5.0.5 anymatch@2.0.0 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 gulp-cli@2.3.0 matchdep@2.0.0 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp-load-plugins@1.6.0 findup-sync@3.0.0 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 glob-watcher@5.0.5 anymatch@2.0.0 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 gulp-cli@2.3.0 matchdep@2.0.0 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 glob-watcher@5.0.5 anymatch@2.0.0 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 gulp-cli@2.3.0 matchdep@2.0.0 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 glob-watcher@5.0.5 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 glob-watcher@5.0.5 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 gulp-cli@2.3.0 liftoff@3.1.0 findup-sync@3.0.0 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 gulp-cli@2.3.0 matchdep@2.0.0 findup-sync@2.0.0 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 glob-watcher@5.0.5 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 glob-watcher@5.0.5 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 gulp-cli@2.3.0 liftoff@3.1.0 findup-sync@3.0.0 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 gulp-cli@2.3.0 matchdep@2.0.0 findup-sync@2.0.0 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 glob-watcher@5.0.5 anymatch@2.0.0 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 gulp-cli@2.3.0 matchdep@2.0.0 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 glob-watcher@5.0.5 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 glob-watcher@5.0.5 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 gulp-cli@2.3.0 liftoff@3.1.0 findup-sync@3.0.0 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 gulp-cli@2.3.0 matchdep@2.0.0 findup-sync@2.0.0 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 glob-watcher@5.0.5 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 glob-watcher@5.0.5 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 gulp-cli@2.3.0 liftoff@3.1.0 findup-sync@3.0.0 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 gulp-cli@2.3.0 matchdep@2.0.0 findup-sync@2.0.0 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 glob-watcher@5.0.5 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 glob-watcher@5.0.5 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 gulp-cli@2.3.0 liftoff@3.1.0 findup-sync@3.0.0 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 gulp-cli@2.3.0 matchdep@2.0.0 findup-sync@2.0.0 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0

Overview

Affected versions of this package are vulnerable to Prototype Pollution via the unset function in index.js, because it allows access to object prototype properties.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade unset-value to version 2.0.1 or higher.

References

high severity

Authorization Bypass

  • Vulnerable module: express-jwt
  • Introduced through: express-jwt@5.3.3

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b express-jwt@5.3.3
    Remediation: Upgrade to express-jwt@6.0.0.

Overview

express-jwt is a JWT authentication middleware.

Affected versions of this package are vulnerable to Authorization Bypass. The algorithms entry to be specified in the configuration is not being enforced. When algorithms is not specified in the configuration, with the combination of jwks-rsa, it may lead to authorization bypass.

Remediation

Upgrade express-jwt to version 6.0.0 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: lodash.set
  • Introduced through: express-jwt@5.3.3

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b express-jwt@5.3.3 lodash.set@4.3.2

Overview

lodash.set is a lodash method _.set exported as a Node.js module.

Affected versions of this package are vulnerable to Prototype Pollution via the set and setwith functions due to improper user input sanitization.

Note

lodash.set is not maintained for a long time. It is recommended to use lodash library, which contains the fix since version 4.17.17.

PoC

lod = require('lodash')
lod.set({}, "__proto__[test2]", "456")
console.log(Object.prototype)

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

There is no fixed version for lodash.set.

References

high severity

Command Injection

  • Vulnerable module: vizion
  • Introduced through: pm2@2.10.4

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4 vizion@0.2.13
    Remediation: Upgrade to pm2@4.3.0.

Overview

vizion is a Git/Subversion/Mercurial repository metadata parser.

Affected versions of this package are vulnerable to Command Injection. The argument revision can be controlled by users without any sanitization.

Remediation

Upgrade vizion to version 2.1.0 or higher.

References

high severity

Improper Privilege Management

  • Vulnerable module: shelljs
  • Introduced through: pm2@2.10.4

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4 shelljs@0.7.8
    Remediation: Upgrade to pm2@3.0.0.

Overview

shelljs is a wrapper for the Unix shell commands for Node.js.

Affected versions of this package are vulnerable to Improper Privilege Management. When ShellJS is used to create shell scripts which may be running as root, users with low-level privileges on the system can leak sensitive information such as passwords (depending on implementation) from the standard output of the privileged process OR shutdown privileged ShellJS processes via the exec function when triggering EACCESS errors.

Note: Thi only impacts the synchronous version of shell.exec().

Remediation

Upgrade shelljs to version 0.8.5 or higher.

References

high severity

SQL Injection

  • Vulnerable module: sequelize
  • Introduced through: sequelize@4.44.4

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b sequelize@4.44.4
    Remediation: Upgrade to sequelize@6.21.2.

Overview

sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.

Affected versions of this package are vulnerable to SQL Injection due to an improper escaping for multiple appearances of $ in a string.

Remediation

Upgrade sequelize to version 6.21.2 or higher.

References

medium severity

Use of a Broken or Risky Cryptographic Algorithm

  • Vulnerable module: jsonwebtoken
  • Introduced through: jsonwebtoken@8.5.1 and express-jwt@5.3.3

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b jsonwebtoken@8.5.1
    Remediation: Upgrade to jsonwebtoken@9.0.0.
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b express-jwt@5.3.3 jsonwebtoken@8.5.1
    Remediation: Upgrade to express-jwt@8.0.0.

Overview

jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)

Affected versions of this package are vulnerable to Use of a Broken or Risky Cryptographic Algorithm such that the library can be misconfigured to use legacy, insecure key types for signature verification. For example, DSA keys could be used with the RS256 algorithm.

Exploitability

Users are affected when using an algorithm and a key type other than the combinations mentioned below:

EC: ES256, ES384, ES512

RSA: RS256, RS384, RS512, PS256, PS384, PS512

RSA-PSS: PS256, PS384, PS512

And for Elliptic Curve algorithms:

ES256: prime256v1

ES384: secp384r1

ES512: secp521r1

Workaround

Users who are unable to upgrade to the fixed version can use the allowInvalidAsymmetricKeyTypes option to true in the sign() and verify() functions to continue usage of invalid key type/algorithm combination in 9.0.0 for legacy compatibility.

Remediation

Upgrade jsonwebtoken to version 9.0.0 or higher.

References

medium severity

Arbitrary Code Injection

  • Vulnerable module: morgan
  • Introduced through: morgan@1.9.0

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b morgan@1.9.0
    Remediation: Upgrade to morgan@1.9.1.

Overview

morgan is a HTTP request logger middleware for node.js.

Affected versions of this package are vulnerable to Arbitrary Code Injection. An attacker could use the format parameter to inject arbitrary commands.

Remediation

Upgrade morgan to version 1.9.1 or higher.

References

medium severity

Command Injection

  • Vulnerable module: codecov
  • Introduced through: codecov@3.0.1

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b codecov@3.0.1
    Remediation: Upgrade to codecov@3.6.2.

Overview

codecov is a npm package for uploading reports to Codecov.

Affected versions of this package are vulnerable to Command Injection. The value provided as part of the gcov-args argument is executed by the exec function within lib/codecov.js.

PoC by JHU System Security Lab

var root = require("codecov");
var args = {
  "options": {
    'gcov-args': "& touch PWNED &"
  }
}
root.handleInput.upload(args, function(){}, function(){});

Remediation

Upgrade codecov to version 3.6.2 or higher.

References

medium severity

Command Injection

  • Vulnerable module: codecov
  • Introduced through: codecov@3.0.1

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b codecov@3.0.1
    Remediation: Upgrade to codecov@3.6.5.

Overview

codecov is a npm package for uploading reports to Codecov.

Affected versions of this package are vulnerable to Command Injection. The value provided as part of the gcov-root argument is executed by the exec function within lib/codecov.js. This vulnerability exists due to an incomplete fix of CVE-2020-7596.

PoC by JHU System Security Lab

var root = require("codecov");
var args = {
  "options": {
    'gcov-root': "& touch exploit &",
    'gcov-exec': ' ',
    'gcov-args': ' '
  }
}
root.handleInput.upload(args, function(){}, function(){});

Remediation

Upgrade codecov to version 3.6.5 or higher.

References

medium severity

Command Injection

  • Vulnerable module: codecov
  • Introduced through: codecov@3.0.1

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b codecov@3.0.1
    Remediation: Upgrade to codecov@3.7.1.

Overview

codecov is a npm package for uploading reports to Codecov.

Affected versions of this package are vulnerable to Command Injection via the upload method.

Note: This vulnerability exists due to an incomplete fix of CVE-2020-7597.

Remediation

Upgrade codecov to version 3.7.1 or higher.

References

medium severity

Improper Restriction of Security Token Assignment

  • Vulnerable module: jsonwebtoken
  • Introduced through: jsonwebtoken@8.5.1 and express-jwt@5.3.3

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b jsonwebtoken@8.5.1
    Remediation: Upgrade to jsonwebtoken@9.0.0.
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b express-jwt@5.3.3 jsonwebtoken@8.5.1
    Remediation: Upgrade to express-jwt@8.0.0.

Overview

jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)

Affected versions of this package are vulnerable to Improper Restriction of Security Token Assignment via the secretOrPublicKey argument due to misconfigurations of the key retrieval function jwt.verify(). Exploiting this vulnerability might result in incorrect verification of forged tokens when tokens signed with an asymmetric public key could be verified with a symmetric HS256 algorithm.

Note: This vulnerability affects your application if it supports the usage of both symmetric and asymmetric keys in jwt.verify() implementation with the same key retrieval function.

Remediation

Upgrade jsonwebtoken to version 9.0.0 or higher.

References

medium severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: request
  • Introduced through: codecov@3.0.1

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b codecov@3.0.1 request@2.88.2

Overview

request is a simplified http request client.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to insufficient checks in the lib/redirect.js file by allowing insecure redirects in the default configuration, via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).

NOTE: request package has been deprecated, so a fix is not expected. See https://github.com/request/request/issues/3142.

Remediation

A fix was pushed into the master branch but not yet published.

References

medium severity

Prototype Pollution

  • Vulnerable module: tough-cookie
  • Introduced through: codecov@3.0.1

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b codecov@3.0.1 request@2.88.2 tough-cookie@2.5.0

Overview

tough-cookie is a RFC6265 Cookies and CookieJar module for Node.js.

Affected versions of this package are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false mode. Due to an issue with the manner in which the objects are initialized, an attacker can expose or modify a limited amount of property information on those objects. There is no impact to availability.

PoC

// PoC.js
async function main(){
var tough = require("tough-cookie");
var cookiejar = new tough.CookieJar(undefined,{rejectPublicSuffixes:false});
// Exploit cookie
await cookiejar.setCookie(
  "Slonser=polluted; Domain=__proto__; Path=/notauth",
  "https://__proto__/admin"
);
// normal cookie
var cookie = await cookiejar.setCookie(
  "Auth=Lol; Domain=google.com; Path=/notauth",
  "https://google.com/"
);

//Exploit cookie
var a = {};
console.log(a["/notauth"]["Slonser"])
}
main();

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade tough-cookie to version 4.1.3 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: json5
  • Introduced through: babel-core@6.26.3 and babel-register@6.26.0

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 json5@0.5.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-register@6.26.0 babel-core@6.26.3 json5@0.5.1
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 json5@0.5.1

Overview

Affected versions of this package are vulnerable to Prototype Pollution via the parse method , which does not restrict parsing of keys named __proto__, allowing specially crafted strings to pollute the prototype of the resulting object. This pollutes the prototype of the object returned by JSON5.parse and not the global Object prototype (which is the commonly understood definition of Prototype Pollution). Therefore, the actual impact will depend on how applications utilize the returned object and how they filter unwanted keys.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade json5 to version 1.0.2, 2.2.2 or higher.

References

medium severity

Improper Authentication

  • Vulnerable module: jsonwebtoken
  • Introduced through: jsonwebtoken@8.5.1 and express-jwt@5.3.3

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b jsonwebtoken@8.5.1
    Remediation: Upgrade to jsonwebtoken@9.0.0.
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b express-jwt@5.3.3 jsonwebtoken@8.5.1
    Remediation: Upgrade to express-jwt@8.0.0.

Overview

jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)

Affected versions of this package are vulnerable to Improper Authentication such that the lack of algorithm definition in the jwt.verify() function can lead to signature validation bypass due to defaulting to the none algorithm for signature verification.

Exploitability

Users are affected only if all of the following conditions are true for the jwt.verify() function:

  1. A token with no signature is received.

  2. No algorithms are specified.

  3. A falsy (e.g., null, false, undefined) secret or key is passed.

Remediation

Upgrade jsonwebtoken to version 9.0.0 or higher.

References

medium severity

Command Injection

  • Vulnerable module: pm2
  • Introduced through: pm2@2.10.4

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4
    Remediation: Upgrade to pm2@4.3.0.

Overview

pm2 is a production process manager for Node.js applications with a built-in load balancer.

Affected versions of this package are vulnerable to Command Injection. It is possible to inject arbitrary commands as part of user input in the Modularizer.install() method within lib/API/Modules/Modularizer.js as an unsanitized module_name variable. This input is eventually provided to the spawn() function and gets executed as a part of spawned npm install MODULE_NAME ----loglevel=error --prefix INSTALL_PATH command.

PoC by bl4de

// pm2_exploit.js


'use strict'
const pm2 = require('pm2')

// payload - user controllable input
const payload = "test;pwd;whoami;uname -a;ls -l ~/playground/Node;"

pm2.connect(function (err) {
    if (err) {
        console.error(err)
        process.exit(2)
    }

    pm2.start({
        script: 'app.js' // fake app.js to supress "No script path - aborting" error thrown from PM2
    }, (err, apps) => {
        pm2.install(payload, {}) // injection
        pm2.disconnect()
        if (err) {
            throw err
        }
    })
})

Remediation

Upgrade pm2 to version 4.3.0 or higher.

References

medium severity

Command Injection

  • Vulnerable module: pm2
  • Introduced through: pm2@2.10.4

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4
    Remediation: Upgrade to pm2@4.3.0.

Overview

pm2 is a production process manager for Node.js applications with a built-in load balancer.

Affected versions of this package are vulnerable to Command Injection. It is possible to execute arbitrary commands within the pm2.import() function when tar.gz archive is installed with a name provided as user controlled input.

PoC by bl4de

// pm2_exploit.js

'use strict'
const pm2 = require('pm2')

// payload - user controllable input
const payload = "foo.tar.gz;touch here;echo whoami>here;chmod +x here;./here>whoamreallyare"

pm2.connect(function(err) {
    if (err) {
        console.error(err)
        process.exit(2)
    }

    pm2.start({

    }, (err, apps) => {
        pm2.install(payload, {}) // injection
        pm2.disconnect()
        if (err) {
            throw err
        }
    })
})

Remediation

Upgrade pm2 to version 4.3.0 or higher.

References

medium severity

Access of Resource Using Incompatible Type ('Type Confusion')

  • Vulnerable module: sequelize
  • Introduced through: sequelize@4.44.4

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b sequelize@4.44.4
    Remediation: Upgrade to sequelize@6.28.1.

Overview

sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.

Affected versions of this package are vulnerable to Access of Resource Using Incompatible Type ('Type Confusion') due to improper user-input sanitization, due to unsafe fall-through in GET WHERE conditions.

Remediation

Upgrade sequelize to version 6.28.1 or higher.

References

medium severity

SQL Injection

  • Vulnerable module: squel
  • Introduced through: squel@5.13.0

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b squel@5.13.0

Overview

squel is a SQL query string builder.

Affected versions of this package are vulnerable to SQL Injection. The package does not properly escape user provided input when provided using the setFields method. This could lead to sql injection if the query was then executed.

Proof of concept demonstrating the injection of a single quote into a generated sql statement from user provided input.

> console.log(squel.insert().into('buh').setFields({foo: "bar'baz"}).toString());
INSERT INTO buh (foo) VALUES ('bar\'baz')

Remediation

There is no fix version for squel.

References

medium severity

Missing Release of Resource after Effective Lifetime

  • Vulnerable module: inflight
  • Introduced through: gulp-newer@1.4.0, del@3.0.0 and others

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp-newer@1.4.0 glob@7.2.3 inflight@1.0.6
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b del@3.0.0 globby@6.1.0 glob@7.2.3 inflight@1.0.6
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b del@3.0.0 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4 shelljs@0.7.8 glob@7.2.3 inflight@1.0.6
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4 yamljs@0.3.0 glob@7.2.3 inflight@1.0.6
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 vinyl-fs@3.0.3 glob-stream@6.1.0 glob@7.2.3 inflight@1.0.6

Overview

Affected versions of this package are vulnerable to Missing Release of Resource after Effective Lifetime via the makeres function due to improperly deleting keys from the reqs object after execution of callbacks. This behavior causes the keys to remain in the reqs object, which leads to resource exhaustion.

Exploiting this vulnerability results in crashing the node process or in the application crash.

Note: This library is not maintained, and currently, there is no fix for this issue. To overcome this vulnerability, several dependent packages have eliminated the use of this library.

To trigger the memory leak, an attacker would need to have the ability to execute or influence the asynchronous operations that use the inflight module within the application. This typically requires access to the internal workings of the server or application, which is not commonly exposed to remote users. Therefore, “Attack vector” is marked as “Local”.

PoC

const inflight = require('inflight');

function testInflight() {
  let i = 0;
  function scheduleNext() {
    let key = `key-${i++}`;
    const callback = () => {
    };
    for (let j = 0; j < 1000000; j++) {
      inflight(key, callback);
    }

    setImmediate(scheduleNext);
  }


  if (i % 100 === 0) {
    console.log(process.memoryUsage());
  }

  scheduleNext();
}

testInflight();

Remediation

There is no fixed version for inflight.

References

medium severity

Prototype Pollution

  • Vulnerable module: minimist
  • Introduced through: pm2@2.10.4

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4 mkdirp@0.5.1 minimist@0.0.8

Overview

minimist is a parse argument options module.

Affected versions of this package are vulnerable to Prototype Pollution. The library could be tricked into adding or modifying properties of Object.prototype using a constructor or __proto__ payload.

PoC by Snyk

require('minimist')('--__proto__.injected0 value0'.split(' '));
console.log(({}).injected0 === 'value0'); // true

require('minimist')('--constructor.prototype.injected1 value1'.split(' '));
console.log(({}).injected1 === 'value1'); // true

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade minimist to version 0.2.1, 1.2.3 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: browserslist
  • Introduced through: babel-preset-env@1.7.0

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b babel-preset-env@1.7.0 browserslist@3.2.8

Overview

browserslist is a Share target browsers between different front-end tools, like Autoprefixer, Stylelint and babel-env-preset

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) during parsing of queries.

PoC by Yeting Li

var browserslist = require("browserslist")
function build_attack(n) {
    var ret = "> "
    for (var i = 0; i < n; i++) {
        ret += "1"
    }
    return ret + "!";
}

// browserslist('> 1%')

//browserslist(build_attack(500000))
for(var i = 1; i <= 500000; i++) {
    if (i % 1000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
        try{
            browserslist(attack_str);
            var time_cost = Date.now() - time;
            console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
            }
        catch(e){
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
        }
    }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade browserslist to version 4.16.5 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: glob-parent
  • Introduced through: pm2@2.10.4 and gulp@4.0.2

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4 chokidar@2.1.8 glob-parent@3.1.0
    Remediation: Upgrade to pm2@4.0.0.
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 glob-watcher@5.0.5 chokidar@2.1.8 glob-parent@3.1.0
    Remediation: Upgrade to gulp@5.0.0.
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b gulp@4.0.2 vinyl-fs@3.0.3 glob-stream@6.1.0 glob-parent@3.1.0
    Remediation: Upgrade to gulp@5.0.0.

Overview

glob-parent is a package that helps extracting the non-magic parent path from a glob string.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). The enclosure regex used to check for strings ending in enclosure containing path separator.

PoC by Yeting Li

var globParent = require("glob-parent")
function build_attack(n) {
var ret = "{"
for (var i = 0; i < n; i++) {
ret += "/"
}

return ret;
}

globParent(build_attack(5000));

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade glob-parent to version 5.1.2 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: redis
  • Introduced through: connect-redis@3.4.2

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b connect-redis@3.4.2 redis@2.8.0
    Remediation: Upgrade to connect-redis@4.0.0.

Overview

redis is an A high performance Redis client.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). When a client is in monitoring mode, monitor_regex, which is used to detected monitor messages` could cause exponential backtracking on some strings, leading to denial of service.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade redis to version 3.1.1 or higher.

References

medium severity

Information Exposure

  • Vulnerable module: sequelize
  • Introduced through: sequelize@4.44.4

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b sequelize@4.44.4
    Remediation: Upgrade to sequelize@6.28.1.

Overview

sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.

Affected versions of this package are vulnerable to Information Exposure due to improper user-input, by allowing an attacker to create malicious queries leading to SQL errors.

Remediation

Upgrade sequelize to version 6.28.1 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: validator
  • Introduced through: sequelize@4.44.4

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b sequelize@4.44.4 validator@10.11.0
    Remediation: Upgrade to sequelize@5.22.5.

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isSlug function

PoC

var validator = require("validator")
function build_attack(n) {
    var ret = "111"
    for (var i = 0; i < n; i++) {
        ret += "a"
    }

    return ret+"_";
}
for(var i = 1; i <= 50000; i++) {
    if (i % 10000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
       validator.isSlug(attack_str)
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
   }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade validator to version 13.6.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: validator
  • Introduced through: sequelize@4.44.4

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b sequelize@4.44.4 validator@10.11.0
    Remediation: Upgrade to sequelize@5.22.5.

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isHSL function.

PoC

var validator = require("validator")
function build_attack(n) {
    var ret = "hsla(0"
    for (var i = 0; i < n; i++) {
        ret += " "
    }

    return ret+"◎";
}
for(var i = 1; i <= 50000; i++) {
    if (i % 1000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
       validator.isHSL(attack_str)
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
   }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade validator to version 13.6.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: validator
  • Introduced through: sequelize@4.44.4

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b sequelize@4.44.4 validator@10.11.0
    Remediation: Upgrade to sequelize@5.22.5.

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isEmail function.

PoC

var validator = require("validator")
function build_attack(n) {
    var ret = ""
    for (var i = 0; i < n; i++) {
        ret += "<"
    }

    return ret+"";
}
for(var i = 1; i <= 50000; i++) {
    if (i % 10000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
        validator.isEmail(attack_str,{ allow_display_name: true })
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
   }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade validator to version 13.6.0 or higher.

References

medium severity

Session Fixation

  • Vulnerable module: passport
  • Introduced through: passport@0.4.1

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b passport@0.4.1
    Remediation: Upgrade to passport@0.6.0.

Overview

passport is a Simple, unobtrusive authentication for Node.js.

Affected versions of this package are vulnerable to Session Fixation. When a user logs in or logs out, the session is regenerated instead of being closed.

Remediation

Upgrade passport to version 0.6.0 or higher.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: debug
  • Introduced through: socket.io@2.5.0 and socket.io-redis@5.4.0

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b socket.io@2.5.0 debug@4.1.1
    Remediation: Upgrade to socket.io@3.0.5.
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b socket.io-redis@5.4.0 debug@4.1.1
    Remediation: Upgrade to socket.io-redis@6.1.0.
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b socket.io@2.5.0 engine.io@3.6.1 debug@4.1.1
    Remediation: Upgrade to socket.io@3.0.0.
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b socket.io@2.5.0 socket.io-parser@3.4.3 debug@4.1.1
    Remediation: Upgrade to socket.io@3.0.0.
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b socket.io@2.5.0 debug@4.1.1
    Remediation: Upgrade to socket.io@3.0.5.
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b socket.io-redis@5.4.0 debug@4.1.1
    Remediation: Upgrade to socket.io-redis@6.1.0.
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b socket.io@2.5.0 engine.io@3.6.1 debug@4.1.1
    Remediation: Upgrade to socket.io@3.0.0.
  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b socket.io@2.5.0 socket.io-parser@3.4.3 debug@4.1.1
    Remediation: Upgrade to socket.io@3.0.0.

Overview

debug is a small debugging utility.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) in the function useColors via manipulation of the str argument. The vulnerability can cause a very low impact of about 2 seconds of matching time for data 50k characters long.

Note: CVE-2017-20165 is a duplicate of this vulnerability.

PoC

Use the following regex in the %o formatter.

/\s*\n\s*/

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade debug to version 2.6.9, 3.1.0, 3.2.7, 4.3.1 or higher.

References

low severity

Prototype Pollution

  • Vulnerable module: minimist
  • Introduced through: pm2@2.10.4

Detailed paths

  • Introduced through: gobhash-backend@fcpauldiaz/GobHash-Backend#0aa30e68ce79d8e77a8798f44067bf7dd2876d6b pm2@2.10.4 mkdirp@0.5.1 minimist@0.0.8

Overview

minimist is a parse argument options module.

Affected versions of this package are vulnerable to Prototype Pollution due to a missing handler to Function.prototype.

Notes:

  • This vulnerability is a bypass to CVE-2020-7598

  • The reason for the different CVSS between CVE-2021-44906 to CVE-2020-7598, is that CVE-2020-7598 can pollute objects, while CVE-2021-44906 can pollute only function.

PoC by Snyk

require('minimist')('--_.constructor.constructor.prototype.foo bar'.split(' '));
console.log((function(){}).foo); // bar

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade minimist to version 0.2.4, 1.2.6 or higher.

References