devlucas/webtask-micro-service
Ready to fix your vulnerabilities? Automatically find, fix, and monitor vulnerabilities for free with Snyk.
Find, fix and prevent vulnerabilities in your code.
high severity
- Vulnerable module: pug
- Introduced through: webtask-tools@3.4.1
Detailed paths
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › webtask-tools@3.4.1 › pug@2.0.4
Overview
pug is an A clean, whitespace-sensitive template language for writing HTML
Affected versions of this package are vulnerable to Remote Code Execution (RCE). If a remote attacker was able to control the pretty option of the pug compiler, e.g. if you spread a user provided object such as the query parameters of a request into the pug template inputs, it was possible for them to achieve remote code execution on the node.js backend.
Remediation
Upgrade pug
to version 3.0.1 or higher.
References
high severity
- Vulnerable module: pug-code-gen
- Introduced through: webtask-tools@3.4.1
Detailed paths
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › webtask-tools@3.4.1 › pug@2.0.4 › pug-code-gen@2.0.3
Overview
pug-code-gen is a Default code-generator for pug. It generates HTML via a JavaScript template function.
Affected versions of this package are vulnerable to Improper Control of Generation of Code ('Code Injection') via the name
option of the compileClient
, compileFileClient
, or compileClientWithDependenciesTracked
functions. An attacker can execute arbitrary JavaScript code by providing untrusted input.
Note:
These functions are for compiling Pug templates into JavaScript, and there would typically be no reason to allow untrusted callers.
PoC
const express = require("express")
const pug = require("pug")
const runtimeWrap = require('pug-runtime/wrap');
const PORT = 3000
const app = express()
app.get("/", (req, res) => {
const out = runtimeWrap(pug.compileClient('string of pug', req.query))
res.send(out())
})
app.listen(PORT, () => {
console.log(`Server is running on port ${PORT}`)
})
Remediation
Upgrade pug-code-gen
to version 3.0.3 or higher.
References
high severity
- Vulnerable module: express-jwt
- Introduced through: express-jwt@5.3.3
Detailed paths
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › express-jwt@5.3.3Remediation: Upgrade to express-jwt@6.0.0.
Overview
express-jwt is a JWT authentication middleware.
Affected versions of this package are vulnerable to Authorization Bypass. The algorithms
entry to be specified in the configuration is not being enforced. When algorithms
is not specified in the configuration, with the combination of jwks-rsa
, it may lead to authorization bypass.
Remediation
Upgrade express-jwt
to version 6.0.0 or higher.
References
high severity
- Vulnerable module: lodash.set
- Introduced through: express-jwt@5.3.3
Detailed paths
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › express-jwt@5.3.3 › lodash.set@4.3.2
Overview
lodash.set is a lodash method _.set exported as a Node.js module.
Affected versions of this package are vulnerable to Prototype Pollution via the set
and setwith
functions due to improper user input sanitization.
Note
lodash.set
is not maintained for a long time. It is recommended to use lodash
library, which contains the fix since version 4.17.17.
PoC
lod = require('lodash')
lod.set({}, "__proto__[test2]", "456")
console.log(Object.prototype)
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
There is no fixed version for lodash.set
.
References
high severity
- Vulnerable module: axios
- Introduced through: jwks-rsa@1.12.3
Detailed paths
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › jwks-rsa@1.12.3 › axios@0.21.4Remediation: Upgrade to jwks-rsa@2.0.0.
Overview
axios is a promise-based HTTP client for the browser and Node.js.
Affected versions of this package are vulnerable to Cross-site Request Forgery (CSRF) due to inserting the X-XSRF-TOKEN
header using the secret XSRF-TOKEN
cookie value in all requests to any server when the XSRF-TOKEN
0 cookie is available, and the withCredentials
setting is turned on. If a malicious user manages to obtain this value, it can potentially lead to the XSRF defence mechanism bypass.
Workaround
Users should change the default XSRF-TOKEN
cookie name in the Axios configuration and manually include the corresponding header only in the specific places where it's necessary.
Remediation
Upgrade axios
to version 0.28.0, 1.6.0 or higher.
References
medium severity
- Vulnerable module: jsonwebtoken
- Introduced through: express-jwt@5.3.3, jwks-rsa@1.12.3 and others
Detailed paths
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › express-jwt@5.3.3 › jsonwebtoken@8.5.1Remediation: Upgrade to express-jwt@7.7.8.
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › jwks-rsa@1.12.3 › jsonwebtoken@8.5.1Remediation: Upgrade to jwks-rsa@2.0.0.
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › webtask-tools@3.4.1 › jsonwebtoken@5.7.0
Overview
jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)
Affected versions of this package are vulnerable to Use of a Broken or Risky Cryptographic Algorithm such that the library can be misconfigured to use legacy, insecure key types for signature verification. For example, DSA keys could be used with the RS256 algorithm.
Exploitability
Users are affected when using an algorithm and a key type other than the combinations mentioned below:
EC: ES256, ES384, ES512
RSA: RS256, RS384, RS512, PS256, PS384, PS512
RSA-PSS: PS256, PS384, PS512
And for Elliptic Curve algorithms:
ES256: prime256v1
ES384: secp384r1
ES512: secp521r1
Workaround
Users who are unable to upgrade to the fixed version can use the allowInvalidAsymmetricKeyTypes
option to true
in the sign()
and verify()
functions to continue usage of invalid key type/algorithm combination in 9.0.0 for legacy compatibility.
Remediation
Upgrade jsonwebtoken
to version 9.0.0 or higher.
References
medium severity
- Vulnerable module: jsonwebtoken
- Introduced through: express-jwt@5.3.3, jwks-rsa@1.12.3 and others
Detailed paths
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › express-jwt@5.3.3 › jsonwebtoken@8.5.1Remediation: Upgrade to express-jwt@7.7.8.
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › jwks-rsa@1.12.3 › jsonwebtoken@8.5.1Remediation: Upgrade to jwks-rsa@2.0.0.
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › webtask-tools@3.4.1 › jsonwebtoken@5.7.0
Overview
jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)
Affected versions of this package are vulnerable to Improper Restriction of Security Token Assignment via the secretOrPublicKey
argument due to misconfigurations of the key retrieval function jwt.verify()
. Exploiting this vulnerability might result in incorrect verification of forged tokens when tokens signed with an asymmetric public key could be verified with a symmetric HS256 algorithm.
Note:
This vulnerability affects your application if it supports the usage of both symmetric and asymmetric keys in jwt.verify()
implementation with the same key retrieval function.
Remediation
Upgrade jsonwebtoken
to version 9.0.0 or higher.
References
medium severity
- Vulnerable module: request
- Introduced through: request@2.88.2
Detailed paths
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › request@2.88.2
Overview
request is a simplified http request client.
Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to insufficient checks in the lib/redirect.js
file by allowing insecure redirects in the default configuration, via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).
NOTE: request
package has been deprecated, so a fix is not expected. See https://github.com/request/request/issues/3142.
Remediation
A fix was pushed into the master
branch but not yet published.
References
medium severity
- Vulnerable module: tough-cookie
- Introduced through: request@2.88.2 and request-promise@4.2.6
Detailed paths
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › request@2.88.2 › tough-cookie@2.5.0
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › request-promise@4.2.6 › tough-cookie@2.5.0
Overview
tough-cookie is a RFC6265 Cookies and CookieJar module for Node.js.
Affected versions of this package are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false
mode. Due to an issue with the manner in which the objects are initialized, an attacker can expose or modify a limited amount of property information on those objects. There is no impact to availability.
PoC
// PoC.js
async function main(){
var tough = require("tough-cookie");
var cookiejar = new tough.CookieJar(undefined,{rejectPublicSuffixes:false});
// Exploit cookie
await cookiejar.setCookie(
"Slonser=polluted; Domain=__proto__; Path=/notauth",
"https://__proto__/admin"
);
// normal cookie
var cookie = await cookiejar.setCookie(
"Auth=Lol; Domain=google.com; Path=/notauth",
"https://google.com/"
);
//Exploit cookie
var a = {};
console.log(a["/notauth"]["Slonser"])
}
main();
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade tough-cookie
to version 4.1.3 or higher.
References
medium severity
- Vulnerable module: jsonwebtoken
- Introduced through: express-jwt@5.3.3, jwks-rsa@1.12.3 and others
Detailed paths
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › express-jwt@5.3.3 › jsonwebtoken@8.5.1Remediation: Upgrade to express-jwt@7.7.8.
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › jwks-rsa@1.12.3 › jsonwebtoken@8.5.1Remediation: Upgrade to jwks-rsa@2.0.0.
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › webtask-tools@3.4.1 › jsonwebtoken@5.7.0
Overview
jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)
Affected versions of this package are vulnerable to Improper Authentication such that the lack of algorithm definition in the jwt.verify()
function can lead to signature validation bypass due to defaulting to the none
algorithm for signature verification.
Exploitability
Users are affected only if all of the following conditions are true for the jwt.verify()
function:
A token with no signature is received.
No algorithms are specified.
A falsy (e.g.,
null
,false
,undefined
) secret or key is passed.
Remediation
Upgrade jsonwebtoken
to version 9.0.0 or higher.
References
medium severity
new
- Vulnerable module: axios
- Introduced through: jwks-rsa@1.12.3
Detailed paths
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › jwks-rsa@1.12.3 › axios@0.21.4Remediation: Upgrade to jwks-rsa@2.0.0.
Overview
axios is a promise-based HTTP client for the browser and Node.js.
Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to the allowAbsoluteUrls
attribute being ignored in the call to the buildFullPath
function from the HTTP adapter. An attacker could launch SSRF attacks or exfiltrate sensitive data by tricking applications into sending requests to malicious endpoints.
PoC
const axios = require('axios');
const client = axios.create({baseURL: 'http://example.com/', allowAbsoluteUrls: false});
client.get('http://evil.com');
Remediation
Upgrade axios
to version 0.30.0, 1.8.2 or higher.
References
medium severity
new
- Vulnerable module: axios
- Introduced through: jwks-rsa@1.12.3
Detailed paths
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › jwks-rsa@1.12.3 › axios@0.21.4Remediation: Upgrade to jwks-rsa@2.0.0.
Overview
axios is a promise-based HTTP client for the browser and Node.js.
Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to not setting allowAbsoluteUrls
to false
by default when processing a requested URL in buildFullPath()
. It may not be obvious that this value is being used with the less safe default, and URLs that are expected to be blocked may be accepted. This is a bypass of the fix for the vulnerability described in CVE-2025-27152.
Remediation
Upgrade axios
to version 0.30.0, 1.8.3 or higher.
References
medium severity
- Vulnerable module: axios
- Introduced through: jwks-rsa@1.12.3
Detailed paths
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › jwks-rsa@1.12.3 › axios@0.21.4Remediation: Upgrade to jwks-rsa@2.0.0.
Overview
axios is a promise-based HTTP client for the browser and Node.js.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). An attacker can deplete system resources by providing a manipulated string as input to the format method, causing the regular expression to exhibit a time complexity of O(n^2)
. This makes the server to become unable to provide normal service due to the excessive cost and time wasted in processing vulnerable regular expressions.
PoC
const axios = require('axios');
console.time('t1');
axios.defaults.baseURL = '/'.repeat(10000) + 'a/';
axios.get('/a').then(()=>{}).catch(()=>{});
console.timeEnd('t1');
console.time('t2');
axios.defaults.baseURL = '/'.repeat(100000) + 'a/';
axios.get('/a').then(()=>{}).catch(()=>{});
console.timeEnd('t2');
/* stdout
t1: 60.826ms
t2: 5.826s
*/
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade axios
to version 0.29.0, 1.6.3 or higher.
References
medium severity
- Vulnerable module: uglify-js
- Introduced through: webtask-tools@3.4.1
Detailed paths
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › webtask-tools@3.4.1 › pug@2.0.4 › pug-filters@3.1.1 › uglify-js@2.8.29
Overview
uglify-js is a JavaScript parser, minifier, compressor and beautifier toolkit.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the string_template
and the decode_template
functions.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade uglify-js
to version 3.14.3 or higher.
References
medium severity
- Vulnerable module: validator
- Introduced through: express-validator@3.2.1
Detailed paths
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › express-validator@3.2.1 › validator@6.2.1Remediation: Upgrade to express-validator@6.5.0.
Overview
validator is a library of string validators and sanitizers.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isSlug
function
PoC
var validator = require("validator")
function build_attack(n) {
var ret = "111"
for (var i = 0; i < n; i++) {
ret += "a"
}
return ret+"_";
}
for(var i = 1; i <= 50000; i++) {
if (i % 10000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
validator.isSlug(attack_str)
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade validator
to version 13.6.0 or higher.
References
medium severity
- Vulnerable module: validator
- Introduced through: express-validator@3.2.1
Detailed paths
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › express-validator@3.2.1 › validator@6.2.1Remediation: Upgrade to express-validator@6.5.0.
Overview
validator is a library of string validators and sanitizers.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isHSL
function.
PoC
var validator = require("validator")
function build_attack(n) {
var ret = "hsla(0"
for (var i = 0; i < n; i++) {
ret += " "
}
return ret+"◎";
}
for(var i = 1; i <= 50000; i++) {
if (i % 1000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
validator.isHSL(attack_str)
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade validator
to version 13.6.0 or higher.
References
medium severity
- Vulnerable module: validator
- Introduced through: express-validator@3.2.1
Detailed paths
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › express-validator@3.2.1 › validator@6.2.1Remediation: Upgrade to express-validator@6.5.0.
Overview
validator is a library of string validators and sanitizers.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isEmail
function.
PoC
var validator = require("validator")
function build_attack(n) {
var ret = ""
for (var i = 0; i < n; i++) {
ret += "<"
}
return ret+"";
}
for(var i = 1; i <= 50000; i++) {
if (i % 10000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
validator.isEmail(attack_str,{ allow_display_name: true })
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade validator
to version 13.6.0 or higher.
References
low severity
- Vulnerable module: ms
- Introduced through: webtask-tools@3.4.1
Detailed paths
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › webtask-tools@3.4.1 › jsonwebtoken@5.7.0 › ms@0.7.3Remediation: Open PR to patch ms@0.7.3.
Overview
ms
is a tiny millisecond conversion utility.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to an incomplete fix for previously reported vulnerability npm:ms:20151024. The fix limited the length of accepted input string to 10,000 characters, and turned to be insufficient making it possible to block the event loop for 0.3 seconds (on a typical laptop) with a specially crafted string passed to ms()
function.
Proof of concept
ms = require('ms');
ms('1'.repeat(9998) + 'Q') // Takes about ~0.3s
Note: Snyk's patch for this vulnerability limits input length to 100 characters. This new limit was deemed to be a breaking change by the author. Based on user feedback, we believe the risk of breakage is very low, while the value to your security is much greater, and therefore opted to still capture this change in a patch for earlier versions as well. Whenever patching security issues, we always suggest to run tests on your code to validate that nothing has been broken.
For more information on Regular Expression Denial of Service (ReDoS)
attacks, go to our blog.
Disclosure Timeline
- Feb 9th, 2017 - Reported the issue to package owner.
- Feb 11th, 2017 - Issue acknowledged by package owner.
- April 12th, 2017 - Fix PR opened by Snyk Security Team.
- May 15th, 2017 - Vulnerability published.
- May 16th, 2017 - Issue fixed and version
2.0.0
released. - May 21th, 2017 - Patches released for versions
>=0.7.1, <=1.0.0
.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade ms
to version 2.0.0 or higher.
References
low severity
- Vulnerable module: validator
- Introduced through: express-validator@3.2.1
Detailed paths
-
Introduced through: webtask-micro-service@devlucas/webtask-micro-service#aeac74e39cbd4442bba2615498fb90c3c94d0514 › express-validator@3.2.1 › validator@6.2.1Remediation: Upgrade to express-validator@5.0.0.
Overview
validator is a library of string validators and sanitizers.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It used a regular expression (^\s*data:([a-z]+\/[a-z0-9\-\+]+(;[a-z\-]+=[a-z0-9\-]+)?)?(;base64)?,[a-z0-9!\$&',\(\)\*\+,;=\-\._~:@\/\?%\s]*\s*$
) in order to validate Data URIs. This can cause an impact of about 10 seconds matching time for data 70K characters long.
Disclosure Timeline
- Feb 15th, 2018 - Initial Disclosure to package owner
- Feb 16th, 2018 - Initial Response from package owner
- Feb 18th, 2018 - Fix issued
- Feb 18th, 2018 - Vulnerability published
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade validator
to version 9.4.1 or higher.