Find, fix and prevent vulnerabilities in your code.
critical severity
- Vulnerable module: form-data
- Introduced through: mailgun-js@0.11.3
Detailed paths
-
Introduced through: okcandidate-okcontact@code4hr/okcandidate-okcontact#97a08892a69a22aadb75522395880e05a6edf2b6 › mailgun-js@0.11.3 › form-data@2.2.0Remediation: Upgrade to mailgun-js@0.19.0.
Overview
Affected versions of this package are vulnerable to Predictable Value Range from Previous Values via the boundary
value, which uses Math.random()
. An attacker can manipulate HTTP request boundaries by exploiting predictable values, potentially leading to HTTP parameter pollution.
Remediation
Upgrade form-data
to version 2.5.4, 3.0.4, 4.0.4 or higher.
References
high severity
- Vulnerable module: http-proxy-agent
- Introduced through: mailgun-js@0.11.3
Detailed paths
-
Introduced through: okcandidate-okcontact@code4hr/okcandidate-okcontact#97a08892a69a22aadb75522395880e05a6edf2b6 › mailgun-js@0.11.3 › proxy-agent@2.1.0 › http-proxy-agent@1.0.0Remediation: Upgrade to mailgun-js@0.17.0.
Overview
http-proxy-agent provides an http.Agent implementation that connects to a specified HTTP or HTTPS proxy server, and can be used with the built-in http module.
Affected versions of this package are vulnerable to Uninitialized Memory Exposure and Denial of Service (DoS) attacks due to passing unsanitized options to Buffer(arg).
Uninitialized memory Exposre PoC by ChALKer
// listen with: nc -l -p 8080
var url = require('url');
var https = require('https');
var HttpsProxyAgent = require('https-proxy-agent');
var proxy = {
protocol: 'http:',
host: "127.0.0.1",
port: 8080
};
proxy.auth = 500; // a number as 'auth'
var opts = url.parse('https://example.com/');
var agent = new HttpsProxyAgent(proxy);
opts.agent = agent;
https.get(opts);
Details
The Buffer class on Node.js is a mutable array of binary data, and can be initialized with a string, array or number.
const buf1 = new Buffer([1,2,3]);
// creates a buffer containing [01, 02, 03]
const buf2 = new Buffer('test');
// creates a buffer containing ASCII bytes [74, 65, 73, 74]
const buf3 = new Buffer(10);
// creates a buffer of length 10
The first two variants simply create a binary representation of the value it received. The last one, however, pre-allocates a buffer of the specified size, making it a useful buffer, especially when reading data from a stream.
When using the number constructor of Buffer, it will allocate the memory, but will not fill it with zeros. Instead, the allocated buffer will hold whatever was in memory at the time. If the buffer is not zeroed
by using buf.fill(0)
, it may leak sensitive information like keys, source code, and system info.
Remediation
Upgrade https-proxy-agent
to version 2.1.0 or higher.
Note This is vulnerable only for Node <=4
References
high severity
- Vulnerable module: https-proxy-agent
- Introduced through: mailgun-js@0.11.3
Detailed paths
-
Introduced through: okcandidate-okcontact@code4hr/okcandidate-okcontact#97a08892a69a22aadb75522395880e05a6edf2b6 › mailgun-js@0.11.3 › proxy-agent@2.1.0 › https-proxy-agent@1.0.0Remediation: Upgrade to mailgun-js@0.17.0.
Overview
https-proxy-agent
provides an http.Agent implementation that connects to a specified HTTP or HTTPS proxy server, and can be used with the built-in https module.
Affected versions of this package are vulnerable to Uninitialized Memory Exposure and Denial of Service (DoS) attacks due to passing unsanitized options to Buffer(arg).
Note: CVE-2018-3739 is a duplicate of CVE-2018-3736.
Uninitialized memory Exposre PoC by ChALKer
// listen with: nc -l -p 8080
var url = require('url');
var https = require('https');
var HttpsProxyAgent = require('https-proxy-agent');
var proxy = {
protocol: 'http:',
host: "127.0.0.1",
port: 8080
};
proxy.auth = 500; // a number as 'auth'
var opts = url.parse('https://example.com/');
var agent = new HttpsProxyAgent(proxy);
opts.agent = agent;
https.get(opts);
Details
The Buffer class on Node.js is a mutable array of binary data, and can be initialized with a string, array or number.
const buf1 = new Buffer([1,2,3]);
// creates a buffer containing [01, 02, 03]
const buf2 = new Buffer('test');
// creates a buffer containing ASCII bytes [74, 65, 73, 74]
const buf3 = new Buffer(10);
// creates a buffer of length 10
The first two variants simply create a binary representation of the value it received. The last one, however, pre-allocates a buffer of the specified size, making it a useful buffer, especially when reading data from a stream.
When using the number constructor of Buffer, it will allocate the memory, but will not fill it with zeros. Instead, the allocated buffer will hold whatever was in memory at the time. If the buffer is not zeroed
by using buf.fill(0)
, it may leak sensitive information like keys, source code, and system info.
Remediation
Upgrade https-proxy-agent
to version 2.2.0 or higher.
Note This is vulnerable only for Node <=4
References
high severity
- Vulnerable module: pac-resolver
- Introduced through: mailgun-js@0.11.3
Detailed paths
-
Introduced through: okcandidate-okcontact@code4hr/okcandidate-okcontact#97a08892a69a22aadb75522395880e05a6edf2b6 › mailgun-js@0.11.3 › proxy-agent@2.1.0 › pac-proxy-agent@2.0.2 › pac-resolver@3.0.0
Overview
Affected versions of this package are vulnerable to Remote Code Execution (RCE). This can occur when used with untrusted input, due to unsafe PAC file handling.
In order to exploit this vulnerability in practice, this either requires an attacker on your local network, a specific vulnerable configuration, or some second vulnerability that allows an attacker to set your config values.
NOTE: The fix for this vulnerability is applied in the node-degenerator
library, a dependency is written by the same maintainer.
PoC
const pac = require('pac-resolver');
// Should keep running forever (if not vulnerable):
setInterval(() => {
console.log("Still running");
}, 1000);
// Parsing a malicious PAC file unexpectedly executes unsandboxed code:
pac(`
// Real PAC config:
function FindProxyForURL(url, host) {
return "DIRECT";
}
// But also run arbitrary code:
var f = this.constructor.constructor(\`
// Running outside the sandbox:
console.log('Read env vars:', process.env);
console.log('!!! PAC file is running arbitrary code !!!');
console.log('Can read & could exfiltrate env vars ^');
console.log('Can kill parsing process, like so:');
process.exit(100); // Kill the vulnerable process
// etc etc
\`);
f();
Remediation
Upgrade pac-resolver
to version 5.0.0 or higher.
References
high severity
- Vulnerable module: netmask
- Introduced through: mailgun-js@0.11.3
Detailed paths
-
Introduced through: okcandidate-okcontact@code4hr/okcandidate-okcontact#97a08892a69a22aadb75522395880e05a6edf2b6 › mailgun-js@0.11.3 › proxy-agent@2.1.0 › pac-proxy-agent@2.0.2 › pac-resolver@3.0.0 › netmask@1.0.6
Overview
netmask is a library to parse IPv4 CIDR blocks.
Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF). It incorrectly evaluates individual IPv4 octets that contain octal strings as left-stripped integers, leading to an inordinate attack surface on hundreds of thousands of projects that rely on netmask
to filter or evaluate IPv4 block ranges, both inbound and outbound.
For example, a remote unauthenticated attacker can request local resources using input data 0177.0.0.1
(127.0.0.1
), which netmask
evaluates as the public IP 177.0.0.1
.
Contrastingly, a remote authenticated or unauthenticated attacker can input the data 0127.0.0.01
(87.0.0.1
) as localhost, yet the input data is a public IP and can potentially cause local and remote file inclusion (LFI/RFI).
A remote authenticated or unauthenticated attacker can bypass packages that rely on netmask
to filter IP address blocks to reach intranets, VPNs, containers, adjacent VPC instances, or LAN hosts, using input data such as 012.0.0.1
(10.0.0.1
), which netmask
evaluates as 12.0.0.1
(public).
NOTE: This vulnerability has also been identified as: CVE-2021-29418
Remediation
Upgrade netmask
to version 2.0.1 or higher.
References
high severity
- Vulnerable module: netmask
- Introduced through: mailgun-js@0.11.3
Detailed paths
-
Introduced through: okcandidate-okcontact@code4hr/okcandidate-okcontact#97a08892a69a22aadb75522395880e05a6edf2b6 › mailgun-js@0.11.3 › proxy-agent@2.1.0 › pac-proxy-agent@2.0.2 › pac-resolver@3.0.0 › netmask@1.0.6
Overview
netmask is a library to parse IPv4 CIDR blocks.
Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF). It incorrectly evaluates individual IPv4 octets that contain octal strings as left-stripped integers, leading to an inordinate attack surface on hundreds of thousands of projects that rely on netmask
to filter or evaluate IPv4 block ranges, both inbound and outbound.
For example, a remote unauthenticated attacker can request local resources using input data 0177.0.0.1
(127.0.0.1
), which netmask
evaluates as the public IP 177.0.0.1
.
Contrastingly, a remote authenticated or unauthenticated attacker can input the data 0127.0.0.01
(87.0.0.1
) as localhost, yet the input data is a public IP and can potentially cause local and remote file inclusion (LFI/RFI).
A remote authenticated or unauthenticated attacker can bypass packages that rely on netmask
to filter IP address blocks to reach intranets, VPNs, containers, adjacent VPC instances, or LAN hosts, using input data such as 012.0.0.1
(10.0.0.1
), which netmask
evaluates as 12.0.0.1
(public).
NOTE: This vulnerability has also been identified as: CVE-2021-28918
Remediation
Upgrade netmask
to version 2.0.1 or higher.
References
high severity
- Vulnerable module: async
- Introduced through: mailgun-js@0.11.3
Detailed paths
-
Introduced through: okcandidate-okcontact@code4hr/okcandidate-okcontact#97a08892a69a22aadb75522395880e05a6edf2b6 › mailgun-js@0.11.3 › async@2.5.0Remediation: Upgrade to mailgun-js@0.14.0.
Overview
Affected versions of this package are vulnerable to Prototype Pollution via the mapValues()
method, due to improper check in createObjectIterator
function.
PoC
//when objects are parsed, all properties are created as own (the objects can come from outside sources (http requests/ file))
const hasOwn = JSON.parse('{"__proto__": {"isAdmin": true}}');
//does not have the property, because it's inside object's own "__proto__"
console.log(hasOwn.isAdmin);
async.mapValues(hasOwn, (val, key, cb) => cb(null, val), (error, result) => {
// after the method executes, hasOwn.__proto__ value (isAdmin: true) replaces the prototype of the newly created object, leading to potential exploits.
console.log(result.isAdmin);
});
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade async
to version 2.6.4, 3.2.2 or higher.
References
high severity
- Vulnerable module: semver
- Introduced through: mailgun-js@0.11.3
Detailed paths
-
Introduced through: okcandidate-okcontact@code4hr/okcandidate-okcontact#97a08892a69a22aadb75522395880e05a6edf2b6 › mailgun-js@0.11.3 › proxy-agent@2.1.0 › agent-base@2.1.1 › semver@5.0.3
-
Introduced through: okcandidate-okcontact@code4hr/okcandidate-okcontact#97a08892a69a22aadb75522395880e05a6edf2b6 › mailgun-js@0.11.3 › proxy-agent@2.1.0 › http-proxy-agent@1.0.0 › agent-base@2.1.1 › semver@5.0.3Remediation: Upgrade to mailgun-js@0.17.0.
-
Introduced through: okcandidate-okcontact@code4hr/okcandidate-okcontact#97a08892a69a22aadb75522395880e05a6edf2b6 › mailgun-js@0.11.3 › proxy-agent@2.1.0 › https-proxy-agent@1.0.0 › agent-base@2.1.1 › semver@5.0.3
-
Introduced through: okcandidate-okcontact@code4hr/okcandidate-okcontact#97a08892a69a22aadb75522395880e05a6edf2b6 › mailgun-js@0.11.3 › proxy-agent@2.1.0 › socks-proxy-agent@2.1.1 › agent-base@2.1.1 › semver@5.0.3
Overview
semver is a semantic version parser used by npm.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the function new Range
, when untrusted user data is provided as a range.
PoC
const semver = require('semver')
const lengths_2 = [2000, 4000, 8000, 16000, 32000, 64000, 128000]
console.log("n[+] Valid range - Test payloads")
for (let i = 0; i =1.2.3' + ' '.repeat(lengths_2[i]) + '<1.3.0';
const start = Date.now()
semver.validRange(value)
// semver.minVersion(value)
// semver.maxSatisfying(["1.2.3"], value)
// semver.minSatisfying(["1.2.3"], value)
// new semver.Range(value, {})
const end = Date.now();
console.log('length=%d, time=%d ms', value.length, end - start);
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade semver
to version 5.7.2, 6.3.1, 7.5.2 or higher.
References
high severity
- Vulnerable module: axios
- Introduced through: twilio@3.84.1
Detailed paths
-
Introduced through: okcandidate-okcontact@code4hr/okcandidate-okcontact#97a08892a69a22aadb75522395880e05a6edf2b6 › twilio@3.84.1 › axios@0.26.1Remediation: Upgrade to twilio@4.6.0.
Overview
axios is a promise-based HTTP client for the browser and Node.js.
Affected versions of this package are vulnerable to Cross-site Request Forgery (CSRF) due to inserting the X-XSRF-TOKEN
header using the secret XSRF-TOKEN
cookie value in all requests to any server when the XSRF-TOKEN
0 cookie is available, and the withCredentials
setting is turned on. If a malicious user manages to obtain this value, it can potentially lead to the XSRF defence mechanism bypass.
Workaround
Users should change the default XSRF-TOKEN
cookie name in the Axios configuration and manually include the corresponding header only in the specific places where it's necessary.
Remediation
Upgrade axios
to version 0.28.0, 1.6.0 or higher.
References
medium severity
- Vulnerable module: jsonwebtoken
- Introduced through: twilio@3.84.1
Detailed paths
-
Introduced through: okcandidate-okcontact@code4hr/okcandidate-okcontact#97a08892a69a22aadb75522395880e05a6edf2b6 › twilio@3.84.1 › jsonwebtoken@8.5.1Remediation: Upgrade to twilio@4.0.0.
Overview
jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)
Affected versions of this package are vulnerable to Use of a Broken or Risky Cryptographic Algorithm such that the library can be misconfigured to use legacy, insecure key types for signature verification. For example, DSA keys could be used with the RS256 algorithm.
Exploitability
Users are affected when using an algorithm and a key type other than the combinations mentioned below:
EC: ES256, ES384, ES512
RSA: RS256, RS384, RS512, PS256, PS384, PS512
RSA-PSS: PS256, PS384, PS512
And for Elliptic Curve algorithms:
ES256: prime256v1
ES384: secp384r1
ES512: secp521r1
Workaround
Users who are unable to upgrade to the fixed version can use the allowInvalidAsymmetricKeyTypes
option to true
in the sign()
and verify()
functions to continue usage of invalid key type/algorithm combination in 9.0.0 for legacy compatibility.
Remediation
Upgrade jsonwebtoken
to version 9.0.0 or higher.
References
medium severity
- Vulnerable module: ip
- Introduced through: mailgun-js@0.11.3
Detailed paths
-
Introduced through: okcandidate-okcontact@code4hr/okcandidate-okcontact#97a08892a69a22aadb75522395880e05a6edf2b6 › mailgun-js@0.11.3 › proxy-agent@2.1.0 › pac-proxy-agent@2.0.2 › pac-resolver@3.0.0 › ip@1.1.9
-
Introduced through: okcandidate-okcontact@code4hr/okcandidate-okcontact#97a08892a69a22aadb75522395880e05a6edf2b6 › mailgun-js@0.11.3 › proxy-agent@2.1.0 › socks-proxy-agent@2.1.1 › socks@1.1.10 › ip@1.1.9
-
Introduced through: okcandidate-okcontact@code4hr/okcandidate-okcontact#97a08892a69a22aadb75522395880e05a6edf2b6 › mailgun-js@0.11.3 › proxy-agent@2.1.0 › pac-proxy-agent@2.0.2 › socks-proxy-agent@3.0.1 › socks@1.1.10 › ip@1.1.9
Overview
ip is a Node library.
Affected versions of this package are vulnerable to Server-Side Request Forgery (SSRF) via the isPublic
function, which identifies some private IP addresses as public addresses due to improper parsing of the input.
An attacker can manipulate a system that uses isLoopback()
, isPrivate()
and isPublic
functions to guard outgoing network requests to treat certain IP addresses as globally routable by supplying specially crafted IP addresses.
Note
This vulnerability derived from an incomplete fix for CVE-2023-42282
Remediation
There is no fixed version for ip
.
References
medium severity
- Vulnerable module: jsonwebtoken
- Introduced through: twilio@3.84.1
Detailed paths
-
Introduced through: okcandidate-okcontact@code4hr/okcandidate-okcontact#97a08892a69a22aadb75522395880e05a6edf2b6 › twilio@3.84.1 › jsonwebtoken@8.5.1Remediation: Upgrade to twilio@4.0.0.
Overview
jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)
Affected versions of this package are vulnerable to Improper Restriction of Security Token Assignment via the secretOrPublicKey
argument due to misconfigurations of the key retrieval function jwt.verify()
. Exploiting this vulnerability might result in incorrect verification of forged tokens when tokens signed with an asymmetric public key could be verified with a symmetric HS256 algorithm.
Note:
This vulnerability affects your application if it supports the usage of both symmetric and asymmetric keys in jwt.verify()
implementation with the same key retrieval function.
Remediation
Upgrade jsonwebtoken
to version 9.0.0 or higher.
References
medium severity
- Vulnerable module: jsonwebtoken
- Introduced through: twilio@3.84.1
Detailed paths
-
Introduced through: okcandidate-okcontact@code4hr/okcandidate-okcontact#97a08892a69a22aadb75522395880e05a6edf2b6 › twilio@3.84.1 › jsonwebtoken@8.5.1Remediation: Upgrade to twilio@4.0.0.
Overview
jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)
Affected versions of this package are vulnerable to Improper Authentication such that the lack of algorithm definition in the jwt.verify()
function can lead to signature validation bypass due to defaulting to the none
algorithm for signature verification.
Exploitability
Users are affected only if all of the following conditions are true for the jwt.verify()
function:
A token with no signature is received.
No algorithms are specified.
A falsy (e.g.,
null
,false
,undefined
) secret or key is passed.
Remediation
Upgrade jsonwebtoken
to version 9.0.0 or higher.
References
medium severity
- Vulnerable module: axios
- Introduced through: twilio@3.84.1
Detailed paths
-
Introduced through: okcandidate-okcontact@code4hr/okcandidate-okcontact#97a08892a69a22aadb75522395880e05a6edf2b6 › twilio@3.84.1 › axios@0.26.1Remediation: Upgrade to twilio@4.6.0.
Overview
axios is a promise-based HTTP client for the browser and Node.js.
Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to the allowAbsoluteUrls
attribute being ignored in the call to the buildFullPath
function from the HTTP adapter. An attacker could launch SSRF attacks or exfiltrate sensitive data by tricking applications into sending requests to malicious endpoints.
PoC
const axios = require('axios');
const client = axios.create({baseURL: 'http://example.com/', allowAbsoluteUrls: false});
client.get('http://evil.com');
Remediation
Upgrade axios
to version 0.30.0, 1.8.2 or higher.
References
medium severity
- Vulnerable module: axios
- Introduced through: twilio@3.84.1
Detailed paths
-
Introduced through: okcandidate-okcontact@code4hr/okcandidate-okcontact#97a08892a69a22aadb75522395880e05a6edf2b6 › twilio@3.84.1 › axios@0.26.1Remediation: Upgrade to twilio@4.6.0.
Overview
axios is a promise-based HTTP client for the browser and Node.js.
Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to not setting allowAbsoluteUrls
to false
by default when processing a requested URL in buildFullPath()
. It may not be obvious that this value is being used with the less safe default, and URLs that are expected to be blocked may be accepted. This is a bypass of the fix for the vulnerability described in CVE-2025-27152.
Remediation
Upgrade axios
to version 0.30.0, 1.8.3 or higher.
References
medium severity
- Vulnerable module: https-proxy-agent
- Introduced through: mailgun-js@0.11.3
Detailed paths
-
Introduced through: okcandidate-okcontact@code4hr/okcandidate-okcontact#97a08892a69a22aadb75522395880e05a6edf2b6 › mailgun-js@0.11.3 › proxy-agent@2.1.0 › https-proxy-agent@1.0.0Remediation: Upgrade to mailgun-js@0.17.0.
Overview
https-proxy-agent is a module that provides an http.Agent implementation that connects to a specified HTTP or HTTPS proxy server, and can be used with the built-in https module.
Affected versions of this package are vulnerable to Man-in-the-Middle (MitM). When targeting a HTTP proxy, https-proxy-agent
opens a socket to the proxy, and sends the proxy server a CONNECT
request. If the proxy server responds with something other than a HTTP response 200
, https-proxy-agent
incorrectly returns the socket without any TLS upgrade. This request data may contain basic auth credentials or other secrets, is sent over an unencrypted connection. A suitably positioned attacker could steal these secrets and impersonate the client.
PoC by Kris Adler
var url = require('url');
var https = require('https');
var HttpsProxyAgent = require('https-proxy-agent');
var proxyOpts = url.parse('http://127.0.0.1:80');
var opts = url.parse('https://www.google.com');
var agent = new HttpsProxyAgent(proxyOpts);
opts.agent = agent;
opts.auth = 'username:password';
https.get(opts);
Remediation
Upgrade https-proxy-agent
to version 2.2.3 or higher.
References
medium severity
- Vulnerable module: axios
- Introduced through: twilio@3.84.1
Detailed paths
-
Introduced through: okcandidate-okcontact@code4hr/okcandidate-okcontact#97a08892a69a22aadb75522395880e05a6edf2b6 › twilio@3.84.1 › axios@0.26.1Remediation: Upgrade to twilio@4.6.0.
Overview
axios is a promise-based HTTP client for the browser and Node.js.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). An attacker can deplete system resources by providing a manipulated string as input to the format method, causing the regular expression to exhibit a time complexity of O(n^2)
. This makes the server to become unable to provide normal service due to the excessive cost and time wasted in processing vulnerable regular expressions.
PoC
const axios = require('axios');
console.time('t1');
axios.defaults.baseURL = '/'.repeat(10000) + 'a/';
axios.get('/a').then(()=>{}).catch(()=>{});
console.timeEnd('t1');
console.time('t2');
axios.defaults.baseURL = '/'.repeat(100000) + 'a/';
axios.get('/a').then(()=>{}).catch(()=>{});
console.timeEnd('t2');
/* stdout
t1: 60.826ms
t2: 5.826s
*/
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade axios
to version 0.29.0, 1.6.3 or higher.