Vulnerabilities

28 via 114 paths

Dependencies

672

Source

GitHub

Commit

63b1b6b4

Find, fix and prevent vulnerabilities in your code.

Severity
  • 1
  • 6
  • 19
  • 2
Status
  • 28
  • 0
  • 0

critical severity

Predictable Value Range from Previous Values

  • Vulnerable module: form-data
  • Introduced through: fabric@3.6.6

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 fabric@3.6.6 jsdom@15.2.1 request@2.88.2 form-data@2.3.3

Overview

Affected versions of this package are vulnerable to Predictable Value Range from Previous Values via the boundary value, which uses Math.random(). An attacker can manipulate HTTP request boundaries by exploiting predictable values, potentially leading to HTTP parameter pollution.

Remediation

Upgrade form-data to version 2.5.4, 3.0.4, 4.0.4 or higher.

References

high severity
new

Prototype Pollution

  • Vulnerable module: axios
  • Introduced through: axios@0.27.2 and axios-concurrency@1.0.4

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 axios@0.27.2
    Remediation: Upgrade to axios@1.13.5.
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 axios-concurrency@1.0.4 axios@0.21.4

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Prototype Pollution via the mergeConfig function. An attacker can cause the application to crash by supplying a malicious configuration object containing a __proto__ property, typically by leveraging JSON.parse().

PoC

import axios from "axios";

const maliciousConfig = JSON.parse('{"__proto__": {"x": 1}}');
await axios.get("https://domain/get", maliciousConfig);

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade axios to version 1.13.5 or higher.

References

high severity

Allocation of Resources Without Limits or Throttling

  • Vulnerable module: qs
  • Introduced through: fabric@3.6.6

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 fabric@3.6.6 jsdom@15.2.1 request@2.88.2 qs@6.5.5

Overview

qs is a querystring parser that supports nesting and arrays, with a depth limit.

Affected versions of this package are vulnerable to Allocation of Resources Without Limits or Throttling via improper enforcement of the arrayLimit option in bracket notation parsing. An attacker can exhaust server memory and cause application unavailability by submitting a large number of bracket notation parameters - like a[]=1&a[]=2 - in a single HTTP request.

PoC


const qs = require('qs');
const attack = 'a[]=' + Array(10000).fill('x').join('&a[]=');
const result = qs.parse(attack, { arrayLimit: 100 });
console.log(result.a.length);  // Output: 10000 (should be max 100)

Remediation

Upgrade qs to version 6.14.1 or higher.

References

high severity
new

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: ajv
  • Introduced through: webpack@4.47.0, mini-css-extract-plugin@1.6.2 and others

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 ajv@6.12.6
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 mini-css-extract-plugin@1.6.2 schema-utils@3.3.0 ajv@6.12.6
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 schema-utils@1.0.0 ajv@6.12.6
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 ajv@6.12.6
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 style-loader@0.23.1 schema-utils@1.0.0 ajv@6.12.6
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 terser-webpack-plugin@1.4.6 schema-utils@1.0.0 ajv@6.12.6
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 schema-utils@1.0.0 ajv@6.12.6
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 fabric@3.6.6 jsdom@15.2.1 request@2.88.2 har-validator@5.1.5 ajv@6.12.6
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 terser-webpack-plugin@1.4.6 schema-utils@1.0.0 ajv@6.12.6

Overview

ajv is an Another JSON Schema Validator

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to improper validation of the pattern keyword when combined with $data references. An attacker can cause the application to become unresponsive and exhaust CPU resources by submitting a specially crafted regular expression payload.

Note:

This is only exploitable if the $data option is enabled.

PoC

const Ajv = require('ajv');

// Vulnerable configuration — $data enables runtime pattern injection
const ajv = new Ajv({ $data: true });

const schema = {
  type: 'object',
  properties: {
    pattern: { type: 'string' },
    value: {
      type: 'string',
      pattern: { $data: '1/pattern' }  // Pattern comes from the data itself
    }
  }
};

const validate = ajv.compile(schema);

// Malicious payload — both the pattern and the triggering input
const maliciousPayload = {
  pattern: '^(a|a)*$',           // Catastrophic backtracking pattern
  value: 'a'.repeat(30) + 'X'    // 30 'a's followed by 'X' to force full backtracking
};

console.time('attack');
validate(maliciousPayload);       // Blocks the entire Node.js process for ~44 seconds
console.timeEnd('attack');

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

There is no fixed version for ajv.

References

high severity

Excessive Platform Resource Consumption within a Loop

  • Vulnerable module: braces
  • Introduced through: webpack@4.47.0 and vue-dialog-loading@0.5.3

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 micromatch@3.1.10 braces@2.3.2
    Remediation: Upgrade to webpack@5.0.0.
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 micromatch@3.1.10 braces@2.3.2
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack-cli@3.3.12 findup-sync@3.0.0 micromatch@3.1.10 braces@2.3.2
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 braces@2.3.2
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 braces@2.3.2
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 braces@2.3.2
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 braces@2.3.2
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 braces@2.3.2
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 braces@2.3.2

Overview

braces is a Bash-like brace expansion, implemented in JavaScript.

Affected versions of this package are vulnerable to Excessive Platform Resource Consumption within a Loop due improper limitation of the number of characters it can handle, through the parse function. An attacker can cause the application to allocate excessive memory and potentially crash by sending imbalanced braces as input.

PoC

const { braces } = require('micromatch');

console.log("Executing payloads...");

const maxRepeats = 10;

for (let repeats = 1; repeats <= maxRepeats; repeats += 1) {
  const payload = '{'.repeat(repeats*90000);

  console.log(`Testing with ${repeats} repeats...`);
  const startTime = Date.now();
  braces(payload);
  const endTime = Date.now();
  const executionTime = endTime - startTime;
  console.log(`Regex executed in ${executionTime / 1000}s.\n`);
} 

Remediation

Upgrade braces to version 3.0.3 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: unset-value
  • Introduced through: webpack@4.47.0 and vue-dialog-loading@0.5.3

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack-cli@3.3.12 findup-sync@3.0.0 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack-cli@3.3.12 findup-sync@3.0.0 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack-cli@3.3.12 findup-sync@3.0.0 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack-cli@3.3.12 findup-sync@3.0.0 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack-cli@3.3.12 findup-sync@3.0.0 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0

Overview

Affected versions of this package are vulnerable to Prototype Pollution via the unset function in index.js, because it allows access to object prototype properties.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade unset-value to version 2.0.1 or higher.

References

high severity

Cross-site Request Forgery (CSRF)

  • Vulnerable module: axios
  • Introduced through: axios@0.27.2 and axios-concurrency@1.0.4

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 axios@0.27.2
    Remediation: Upgrade to axios@0.28.0.
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 axios-concurrency@1.0.4 axios@0.21.4

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Cross-site Request Forgery (CSRF) due to inserting the X-XSRF-TOKEN header using the secret XSRF-TOKEN cookie value in all requests to any server when the XSRF-TOKEN0 cookie is available, and the withCredentials setting is turned on. If a malicious user manages to obtain this value, it can potentially lead to the XSRF defence mechanism bypass.

Workaround

Users should change the default XSRF-TOKEN cookie name in the Axios configuration and manually include the corresponding header only in the specific places where it's necessary.

Remediation

Upgrade axios to version 0.28.0, 1.6.0 or higher.

References

medium severity

Allocation of Resources Without Limits or Throttling

  • Vulnerable module: axios
  • Introduced through: axios@0.27.2 and axios-concurrency@1.0.4

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 axios@0.27.2
    Remediation: Upgrade to axios@1.12.0.
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 axios-concurrency@1.0.4 axios@0.21.4

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Allocation of Resources Without Limits or Throttling via the data: URL handler. An attacker can trigger a denial of service by crafting a data: URL with an excessive payload, causing allocation of memory for content decoding before verifying content size limits.

Remediation

Upgrade axios to version 1.12.0 or higher.

References

medium severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: request
  • Introduced through: fabric@3.6.6

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 fabric@3.6.6 jsdom@15.2.1 request@2.88.2

Overview

request is a simplified http request client.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to insufficient checks in the lib/redirect.js file by allowing insecure redirects in the default configuration, via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).

NOTE: request package has been deprecated, so a fix is not expected. See https://github.com/request/request/issues/3142.

Remediation

A fix was pushed into the master branch but not yet published.

References

medium severity

Prototype Pollution

  • Vulnerable module: tough-cookie
  • Introduced through: fabric@3.6.6

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 fabric@3.6.6 jsdom@15.2.1 request@2.88.2 tough-cookie@2.5.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 fabric@3.6.6 jsdom@15.2.1 request-promise-native@1.0.9 tough-cookie@2.5.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 fabric@3.6.6 jsdom@15.2.1 tough-cookie@3.0.1
    Remediation: Upgrade to fabric@5.0.0.

Overview

tough-cookie is a RFC6265 Cookies and CookieJar module for Node.js.

Affected versions of this package are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false mode. Due to an issue with the manner in which the objects are initialized, an attacker can expose or modify a limited amount of property information on those objects. There is no impact to availability.

PoC

// PoC.js
async function main(){
var tough = require("tough-cookie");
var cookiejar = new tough.CookieJar(undefined,{rejectPublicSuffixes:false});
// Exploit cookie
await cookiejar.setCookie(
  "Slonser=polluted; Domain=__proto__; Path=/notauth",
  "https://__proto__/admin"
);
// normal cookie
var cookie = await cookiejar.setCookie(
  "Auth=Lol; Domain=google.com; Path=/notauth",
  "https://google.com/"
);

//Exploit cookie
var a = {};
console.log(a["/notauth"]["Slonser"])
}
main();

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade tough-cookie to version 4.1.3 or higher.

References

medium severity
new

Improper Handling of Unicode Encoding

  • Vulnerable module: tar
  • Introduced through: fabric@3.6.6

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 fabric@3.6.6 canvas@2.11.2 @mapbox/node-pre-gyp@1.0.11 tar@6.2.1
    Remediation: Upgrade to fabric@6.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Improper Handling of Unicode Encoding in Path Reservations via Unicode Sharp-S (ß) Collisions on macOS APFS. An attacker can overwrite arbitrary files by exploiting Unicode normalization collisions in filenames within a malicious tar archive on case-insensitive or normalization-insensitive filesystems.

Note:

This is only exploitable if the system is running on a filesystem such as macOS APFS or HFS+ that ignores Unicode normalization.

Workaround

This vulnerability can be mitigated by filtering out all SymbolicLink entries when extracting tarball data.

PoC

const tar = require('tar');
const fs = require('fs');
const path = require('path');
const { PassThrough } = require('stream');

const exploitDir = path.resolve('race_exploit_dir');
if (fs.existsSync(exploitDir)) fs.rmSync(exploitDir, { recursive: true, force: true });
fs.mkdirSync(exploitDir);

console.log('[*] Testing...');
console.log(`[*] Extraction target: ${exploitDir}`);

// Construct stream
const stream = new PassThrough();

const contentA = 'A'.repeat(1000);
const contentB = 'B'.repeat(1000);

// Key 1: "f_ss"
const header1 = new tar.Header({
    path: 'collision_ss',
    mode: 0o644,
    size: contentA.length,
});
header1.encode();

// Key 2: "f_ß"
const header2 = new tar.Header({
    path: 'collision_ß',
    mode: 0o644,
    size: contentB.length,
});
header2.encode();

// Write to stream
stream.write(header1.block);
stream.write(contentA);
stream.write(Buffer.alloc(512 - (contentA.length % 512))); // Padding

stream.write(header2.block);
stream.write(contentB);
stream.write(Buffer.alloc(512 - (contentB.length % 512))); // Padding

// End
stream.write(Buffer.alloc(1024));
stream.end();

// Extract
const extract = new tar.Unpack({
    cwd: exploitDir,
    // Ensure jobs is high enough to allow parallel processing if locks fail
    jobs: 8 
});

stream.pipe(extract);

extract.on('end', () => {
    console.log('[*] Extraction complete');

    // Check what exists
    const files = fs.readdirSync(exploitDir);
    console.log('[*] Files in exploit dir:', files);
    files.forEach(f => {
        const p = path.join(exploitDir, f);
        const stat = fs.statSync(p);
        const content = fs.readFileSync(p, 'utf8');
        console.log(`File: ${f}, Inode: ${stat.ino}, Content: ${content.substring(0, 10)}... (Length: ${content.length})`);
    });

    if (files.length === 1 || (files.length === 2 && fs.statSync(path.join(exploitDir, files[0])).ino === fs.statSync(path.join(exploitDir, files[1])).ino)) {
        console.log('\[*] GOOD');
    } else {
        console.log('[-] No collision');
    }
});

Remediation

Upgrade tar to version 7.5.4 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: vue-i18n
  • Introduced through: vue-i18n@8.28.2

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-i18n@8.28.2
    Remediation: Upgrade to vue-i18n@9.14.5.

Overview

vue-i18n is an Internationalization plugin for Vue.js

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) when performing translations with escapeParameterHtml set to true. An attacker can execute arbitrary JavaScript code in the context of the user's browser by injecting malicious payloads into translation strings that are rendered using v-html, despite HTML escaping being enabled.

PoC

const i18n = createI18n({
  escapeParameterHtml: true,
  messages: {
    en: {
      vulnerable: 'Caution: <img src=x onerror="{payload}">'
    }
  }
});

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade vue-i18n to version 9.14.5, 10.0.8, 11.1.10 or higher.

References

medium severity
new

Use of a Cryptographic Primitive with a Risky Implementation

  • Vulnerable module: elliptic
  • Introduced through: webpack@4.47.0 and vue-dialog-loading@0.5.3

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 node-libs-browser@2.2.1 crypto-browserify@3.12.1 browserify-sign@4.2.5 elliptic@6.6.1
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 node-libs-browser@2.2.1 crypto-browserify@3.12.1 create-ecdh@4.0.4 elliptic@6.6.1
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 node-libs-browser@2.2.1 crypto-browserify@3.12.1 browserify-sign@4.2.5 elliptic@6.6.1
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 node-libs-browser@2.2.1 crypto-browserify@3.12.1 create-ecdh@4.0.4 elliptic@6.6.1

Overview

elliptic is a fast elliptic-curve cryptography implementation in plain javascript.

Affected versions of this package are vulnerable to Use of a Cryptographic Primitive with a Risky Implementation due to the incorrect computation of the byte-length of k value with leading zeros resulting in its truncation. An attacker can obtain the secret key by analyzing both a faulty signature generated by a vulnerable implementation and a correct signature for the same inputs.

Note:

There is a distinct but related issue CVE-2024-48948.

Remediation

There is no fixed version for elliptic.

References

medium severity
new

Allocation of Resources Without Limits or Throttling

  • Vulnerable module: qs
  • Introduced through: fabric@3.6.6

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 fabric@3.6.6 jsdom@15.2.1 request@2.88.2 qs@6.5.5

Overview

qs is a querystring parser that supports nesting and arrays, with a depth limit.

Affected versions of this package are vulnerable to Allocation of Resources Without Limits or Throttling via the parseArrayValue function when the comma option is in use. An attacker can exhaust system memory by submitting a parameter containing a large number of comma-separated values, resulting in the allocation of excessively large arrays.

Note: This is only exploitable if the comma option is explicitly set to true. arrayLimit is properly enforced for index and bracket notation.

PoC

const qs = require('qs');

const payload = 'a=' + ','.repeat(25);  // 26 elements after split (bypasses arrayLimit: 5)
const options = { comma: true, arrayLimit: 5, throwOnLimitExceeded: true };

try {
  const result = qs.parse(payload, options);
  console.log(result.a.length);  // Outputs: 26 (bypass successful)
} catch (e) {
  console.log('Limit enforced:', e.message);  // Not thrown
}

Remediation

Upgrade qs to version 6.14.2 or higher.

References

medium severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: axios
  • Introduced through: axios@0.27.2 and axios-concurrency@1.0.4

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 axios@0.27.2
    Remediation: Upgrade to axios@0.30.0.
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 axios-concurrency@1.0.4 axios@0.21.4

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to the allowAbsoluteUrls attribute being ignored in the call to the buildFullPath function from the HTTP adapter. An attacker could launch SSRF attacks or exfiltrate sensitive data by tricking applications into sending requests to malicious endpoints.

PoC

const axios = require('axios');
const client = axios.create({baseURL: 'http://example.com/', allowAbsoluteUrls: false});
client.get('http://evil.com');

Remediation

Upgrade axios to version 0.30.0, 1.8.2 or higher.

References

medium severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: axios
  • Introduced through: axios@0.27.2 and axios-concurrency@1.0.4

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 axios@0.27.2
    Remediation: Upgrade to axios@0.30.0.
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 axios-concurrency@1.0.4 axios@0.21.4

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to not setting allowAbsoluteUrls to false by default when processing a requested URL in buildFullPath(). It may not be obvious that this value is being used with the less safe default, and URLs that are expected to be blocked may be accepted. This is a bypass of the fix for the vulnerability described in CVE-2025-27152.

Remediation

Upgrade axios to version 0.30.0, 1.8.3 or higher.

References

medium severity

Missing Release of Resource after Effective Lifetime

  • Vulnerable module: inflight
  • Introduced through: webpack@4.47.0, fabric@3.6.6 and others

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 terser-webpack-plugin@1.4.6 cacache@12.0.4 glob@7.2.3 inflight@1.0.6
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 fabric@3.6.6 canvas@2.11.2 @mapbox/node-pre-gyp@1.0.11 rimraf@3.0.2 glob@7.2.3 inflight@1.0.6
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 terser-webpack-plugin@1.4.6 cacache@12.0.4 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 terser-webpack-plugin@1.4.6 cacache@12.0.4 glob@7.2.3 inflight@1.0.6
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 terser-webpack-plugin@1.4.6 cacache@12.0.4 move-concurrently@1.0.1 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 terser-webpack-plugin@1.4.6 cacache@12.0.4 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 terser-webpack-plugin@1.4.6 cacache@12.0.4 move-concurrently@1.0.1 copy-concurrently@1.0.5 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 terser-webpack-plugin@1.4.6 cacache@12.0.4 move-concurrently@1.0.1 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 terser-webpack-plugin@1.4.6 cacache@12.0.4 move-concurrently@1.0.1 copy-concurrently@1.0.5 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6

Overview

Affected versions of this package are vulnerable to Missing Release of Resource after Effective Lifetime via the makeres function due to improperly deleting keys from the reqs object after execution of callbacks. This behavior causes the keys to remain in the reqs object, which leads to resource exhaustion.

Exploiting this vulnerability results in crashing the node process or in the application crash.

Note: This library is not maintained, and currently, there is no fix for this issue. To overcome this vulnerability, several dependent packages have eliminated the use of this library.

To trigger the memory leak, an attacker would need to have the ability to execute or influence the asynchronous operations that use the inflight module within the application. This typically requires access to the internal workings of the server or application, which is not commonly exposed to remote users. Therefore, “Attack vector” is marked as “Local”.

PoC

const inflight = require('inflight');

function testInflight() {
  let i = 0;
  function scheduleNext() {
    let key = `key-${i++}`;
    const callback = () => {
    };
    for (let j = 0; j < 1000000; j++) {
      inflight(key, callback);
    }

    setImmediate(scheduleNext);
  }


  if (i % 100 === 0) {
    console.log(process.memoryUsage());
  }

  scheduleNext();
}

testInflight();

Remediation

There is no fixed version for inflight.

References

medium severity
new

Directory Traversal

  • Vulnerable module: tar
  • Introduced through: fabric@3.6.6

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 fabric@3.6.6 canvas@2.11.2 @mapbox/node-pre-gyp@1.0.11 tar@6.2.1
    Remediation: Upgrade to fabric@6.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Directory Traversal via processing of hardlinks. An attacker can read or overwrite arbitrary files on the file system by crafting a malicious TAR archive that bypasses path traversal protections during extraction.

Details

A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.

Directory Traversal vulnerabilities can be generally divided into two types:

  • Information Disclosure: Allows the attacker to gain information about the folder structure or read the contents of sensitive files on the system.

st is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public route.

If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.

curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa

Note %2e is the URL encoded version of . (dot).

  • Writing arbitrary files: Allows the attacker to create or replace existing files. This type of vulnerability is also known as Zip-Slip.

One way to achieve this is by using a malicious zip archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.

The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:

2018-04-15 22:04:29 .....           19           19  good.txt
2018-04-15 22:04:42 .....           20           20  ../../../../../../root/.ssh/authorized_keys

Remediation

Upgrade tar to version 7.5.7 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: serialize-javascript
  • Introduced through: webpack@4.47.0 and vue-dialog-loading@0.5.3

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 terser-webpack-plugin@1.4.6 serialize-javascript@4.0.0
    Remediation: Upgrade to webpack@5.1.1.
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 terser-webpack-plugin@1.4.6 serialize-javascript@4.0.0

Overview

serialize-javascript is a package to serialize JavaScript to a superset of JSON that includes regular expressions and functions.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) due to unsanitized URLs. An Attacker can introduce unsafe HTML characters through non-http URLs.

PoC

const serialize = require('serialize-javascript');

let x = serialize({
    x: new URL("x:</script>")
});

console.log(x)

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade serialize-javascript to version 6.0.2 or higher.

References

medium severity
new

Directory Traversal

  • Vulnerable module: tar
  • Introduced through: fabric@3.6.6

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 fabric@3.6.6 canvas@2.11.2 @mapbox/node-pre-gyp@1.0.11 tar@6.2.1
    Remediation: Upgrade to fabric@6.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Directory Traversal via insufficient sanitization of the linkpath parameter during archive extraction. An attacker can overwrite arbitrary files or create malicious symbolic links by crafting a tar archive with hardlink or symlink entries that resolve outside the intended extraction directory.

PoC

const fs = require('fs')
const path = require('path')
const tar = require('tar')

const out = path.resolve('out_repro')
const secret = path.resolve('secret.txt')
const tarFile = path.resolve('exploit.tar')
const targetSym = '/etc/passwd'

// Cleanup & Setup
try { fs.rmSync(out, {recursive:true, force:true}); fs.unlinkSync(secret) } catch {}
fs.mkdirSync(out)
fs.writeFileSync(secret, 'ORIGINAL_DATA')

// 1. Craft malicious Link header (Hardlink to absolute local file)
const h1 = new tar.Header({
  path: 'exploit_hard',
  type: 'Link',
  size: 0,
  linkpath: secret 
})
h1.encode()

// 2. Craft malicious Symlink header (Symlink to /etc/passwd)
const h2 = new tar.Header({
  path: 'exploit_sym',
  type: 'SymbolicLink',
  size: 0,
  linkpath: targetSym 
})
h2.encode()

// Write binary tar
fs.writeFileSync(tarFile, Buffer.concat([ h1.block, h2.block, Buffer.alloc(1024) ]))

console.log('[*] Extracting malicious tarball...')

// 3. Extract with default secure settings
tar.x({
  cwd: out,
  file: tarFile,
  preservePaths: false
}).then(() => {
  console.log('[*] Verifying payload...')

  // Test Hardlink Overwrite
  try {
    fs.writeFileSync(path.join(out, 'exploit_hard'), 'OVERWRITTEN')
    
    if (fs.readFileSync(secret, 'utf8') === 'OVERWRITTEN') {
      console.log('[+] VULN CONFIRMED: Hardlink overwrite successful')
    } else {
      console.log('[-] Hardlink failed')
    }
  } catch (e) {}

  // Test Symlink Poisoning
  try {
    if (fs.readlinkSync(path.join(out, 'exploit_sym')) === targetSym) {
      console.log('[+] VULN CONFIRMED: Symlink points to absolute path')
    } else {
      console.log('[-] Symlink failed')
    }
  } catch (e) {}
})

Details

A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.

Directory Traversal vulnerabilities can be generally divided into two types:

  • Information Disclosure: Allows the attacker to gain information about the folder structure or read the contents of sensitive files on the system.

st is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public route.

If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.

curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa

Note %2e is the URL encoded version of . (dot).

  • Writing arbitrary files: Allows the attacker to create or replace existing files. This type of vulnerability is also known as Zip-Slip.

One way to achieve this is by using a malicious zip archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.

The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:

2018-04-15 22:04:29 .....           19           19  good.txt
2018-04-15 22:04:42 .....           20           20  ../../../../../../root/.ssh/authorized_keys

Remediation

Upgrade tar to version 7.5.3 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: webpack
  • Introduced through: webpack@4.47.0 and vue-dialog-loading@0.5.3

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0
    Remediation: Upgrade to webpack@5.94.0.
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0

Overview

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via DOM clobbering in the AutoPublicPathRuntimeModule class. Non-script HTML elements with unsanitized attributes such as name and id can be leveraged to execute code in the victim's browser. An attacker who can control such elements on a page that includes Webpack-generated files, can cause subsequent scripts to be loaded from a malicious domain.

PoC

<!DOCTYPE html>
<html>
<head>
  <title>Webpack Example</title>
  <!-- Attacker-controlled Script-less HTML Element starts--!>
  <img name="currentScript" src="https://attacker.controlled.server/"></img>
  <!-- Attacker-controlled Script-less HTML Element ends--!>
</head>
<script src="./dist/webpack-gadgets.bundle.js"></script>
<body>
</body>
</html>

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade webpack to version 5.94.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: axios
  • Introduced through: axios@0.27.2 and axios-concurrency@1.0.4

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 axios@0.27.2
    Remediation: Upgrade to axios@0.29.0.
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 axios-concurrency@1.0.4 axios@0.21.4

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). An attacker can deplete system resources by providing a manipulated string as input to the format method, causing the regular expression to exhibit a time complexity of O(n^2). This makes the server to become unable to provide normal service due to the excessive cost and time wasted in processing vulnerable regular expressions.

PoC

const axios = require('axios');

console.time('t1');
axios.defaults.baseURL = '/'.repeat(10000) + 'a/';
axios.get('/a').then(()=>{}).catch(()=>{});
console.timeEnd('t1');

console.time('t2');
axios.defaults.baseURL = '/'.repeat(100000) + 'a/';
axios.get('/a').then(()=>{}).catch(()=>{});
console.timeEnd('t2');


/* stdout
t1: 60.826ms
t2: 5.826s
*/

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade axios to version 0.29.0, 1.6.3 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: glob-parent
  • Introduced through: webpack@4.47.0 and vue-dialog-loading@0.5.3

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 glob-parent@3.1.0
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 glob-parent@3.1.0

Overview

glob-parent is a package that helps extracting the non-magic parent path from a glob string.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). The enclosure regex used to check for strings ending in enclosure containing path separator.

PoC by Yeting Li

var globParent = require("glob-parent")
function build_attack(n) {
var ret = "{"
for (var i = 0; i < n; i++) {
ret += "/"
}

return ret;
}

globParent(build_attack(5000));

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade glob-parent to version 5.1.2 or higher.

References

medium severity

Inefficient Regular Expression Complexity

  • Vulnerable module: micromatch
  • Introduced through: webpack@4.47.0 and vue-dialog-loading@0.5.3

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 micromatch@3.1.10
    Remediation: Upgrade to webpack@5.0.0.
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 micromatch@3.1.10
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack-cli@3.3.12 findup-sync@3.0.0 micromatch@3.1.10
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 webpack@4.47.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10

Overview

Affected versions of this package are vulnerable to Inefficient Regular Expression Complexity due to the use of unsafe pattern configurations that allow greedy matching through the micromatch.braces() function. An attacker can cause the application to hang or slow down by passing a malicious payload that triggers extensive backtracking in regular expression processing.

Remediation

Upgrade micromatch to version 4.0.8 or higher.

References

medium severity

Improper Input Validation

  • Vulnerable module: postcss
  • Introduced through: postcss@7.0.39, autoprefixer@9.8.8 and others

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 postcss@7.0.39
    Remediation: Upgrade to postcss@8.4.31.
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 autoprefixer@9.8.8 postcss@7.0.39
    Remediation: Upgrade to autoprefixer@10.0.0.
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 vue-loader@15.11.1 @vue/component-compiler-utils@3.3.0 postcss@7.0.39

Overview

postcss is a PostCSS is a tool for transforming styles with JS plugins.

Affected versions of this package are vulnerable to Improper Input Validation when parsing external Cascading Style Sheets (CSS) with linters using PostCSS. An attacker can cause discrepancies by injecting malicious CSS rules, such as @font-face{ font:(\r/*);}. This vulnerability is because of an insecure regular expression usage in the RE_BAD_BRACKET variable.

Remediation

Upgrade postcss to version 8.4.31 or higher.

References

medium severity
new

Improper Neutralization of Special Elements in Output Used by a Downstream Component ('Injection')

  • Vulnerable module: quill
  • Introduced through: vue2-editor@2.10.3

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue2-editor@2.10.3 quill@1.3.7

Overview

quill is a modern rich text editor built for compatibility and extensibility.

Affected versions of this package are vulnerable to Improper Neutralization of Special Elements in Output Used by a Downstream Component ('Injection') due to the improper sanitazation in the getHTML() function. An attacker can execute arbitrary JavaScript code in the context of the user's browser by injecting malicious HTML that is not properly validated.

Remediation

There is no fixed version for quill.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: @vue/compiler-sfc
  • Introduced through: vue@2.7.16, vue-dialog-loading@0.5.3 and others

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue@2.7.16 @vue/compiler-sfc@2.7.16
    Remediation: Upgrade to vue@3.0.0.
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 vue@2.7.16 @vue/compiler-sfc@2.7.16
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-kanban@1.8.0 vue@2.7.16 @vue/compiler-sfc@2.7.16

Overview

@vue/compiler-sfc is a @vue/compiler-sfc

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) through the parseHTML function in html-parser.ts. An attacker can cause the application to consume excessive resources by supplying a specially crafted input that triggers inefficient regular expression evaluation.

PoC

Within Vue 2 client-side application code, create a new Vue instance with a template string that includes a <script> node tag that has a different closing tag (in this case </textarea>).

new Vue({
  el: '#app',
  template: '
<div> 
   Hello, world!
   <script>${'<'.repeat(1000000)}</textarea>
</div>'
});

Set up an index.html file that loads the above JavaScript and then mount the newly created Vue instance with mount().

<!DOCTYPE html>
<html>
<head>
  <title>My first Vue app</title>
</head>
<body>
  <div id="app">
    Loading..
  </div>
</body>
</html>

In a browser, visit your Vue application

http://localhost:3000

In the browser, observe how the ReDoS vulnerability is able to increase the amount of time it takes for the page to parse the template and mount your Vue application. This demonstrates the ReDoS vulnerability.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade @vue/compiler-sfc to version 3.0.0-alpha.0 or higher.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: vue
  • Introduced through: vue@2.7.16, vue-dialog-loading@0.5.3 and others

Detailed paths

  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue@2.7.16
    Remediation: Upgrade to vue@3.0.0.
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-dialog-loading@0.5.3 vue@2.7.16
  • Introduced through: @cattr/frontend@cattr-app/frontend-application#63b1b6b4c048cf0a5e6039193ed2f1e7c9c96ca6 vue-kanban@1.8.0 vue@2.7.16

Overview

vue is an open source project with its ongoing development made possible entirely by the support of these awesome backers.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) through the parseHTML function in html-parser.ts. An attacker can cause the application to consume excessive resources by supplying a specially crafted input that triggers inefficient regular expression evaluation.

PoC

Within Vue 2 client-side application code, create a new Vue instance with a template string that includes a <script> node tag that has a different closing tag (in this case </textarea>).

new Vue({
  el: '#app',
  template: '
<div> 
   Hello, world!
   <script>${'<'.repeat(1000000)}</textarea>
</div>'
});

Set up an index.html file that loads the above JavaScript and then mount the newly created Vue instance with mount().

<!DOCTYPE html>
<html>
<head>
  <title>My first Vue app</title>
</head>
<body>
  <div id="app">
    Loading..
  </div>
</body>
</html>

In a browser, visit your Vue application

http://localhost:3000

In the browser, observe how the ReDoS vulnerability is able to increase the amount of time it takes for the page to parse the template and mount your Vue application. This demonstrates the ReDoS vulnerability.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade vue to version 3.0.0-alpha.0 or higher.

References