Find, fix and prevent vulnerabilities in your code.
high severity
new
- Vulnerable module: fast-xml-parser
- Introduced through: fast-xml-parser@4.5.3
Detailed paths
-
Introduced through: @aurahelper/languages@JJLongoria/aura-helper-languages#e144e991e6ac75a7f014fa647c88f14721554e24 › fast-xml-parser@4.5.3Remediation: Upgrade to fast-xml-parser@5.3.4.
Overview
fast-xml-parser is a Validate XML, Parse XML, Build XML without C/C++ based libraries
Affected versions of this package are vulnerable to Uncaught Exception in the numeric entity processing when parsing XML containing out-of-range entity code points. An attacker can cause the application to crash by submitting specially crafted XML input that triggers an uncaught exception.
Remediation
Upgrade fast-xml-parser to version 5.3.4 or higher.
References
high severity
new
- Vulnerable module: fast-xml-parser
- Introduced through: fast-xml-parser@4.5.3
Detailed paths
-
Introduced through: @aurahelper/languages@JJLongoria/aura-helper-languages#e144e991e6ac75a7f014fa647c88f14721554e24 › fast-xml-parser@4.5.3Remediation: Upgrade to fast-xml-parser@5.3.6.
Overview
fast-xml-parser is a Validate XML, Parse XML, Build XML without C/C++ based libraries
Affected versions of this package are vulnerable to XML Entity Expansion in replaceEntitiesValue() when handling excessive DOCTYPE input. An attacker can cause excessive resource consumption and make the application unresponsive by submitting malicious XML input with large text entities referenced multiple times. This is a bypass for Billion Laughs protection in DocTypeReader.js, which prevents excessive referencing within and entity, but doesn't prevent repeated expansion of large entities.
Workaround
This vulnerability can be mitigated by disabling DOCTYPE parsing using the processEntities: false option.
PoC
const { XMLParser } = require('fast-xml-parser');
const entity = 'A'.repeat(1000);
const refs = '&big;'.repeat(100);
const xml = `<!DOCTYPE foo [<!ENTITY big "${entity}">]><root>${refs}</root>`;
console.time('parse');
new XMLParser().parse(xml);
console.timeEnd('parse');
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
wspackage
Remediation
Upgrade fast-xml-parser to version 5.3.6 or higher.
References
high severity
new
- Vulnerable module: minimatch
- Introduced through: @aurahelper/core@2.7.0
Detailed paths
-
Introduced through: @aurahelper/languages@JJLongoria/aura-helper-languages#e144e991e6ac75a7f014fa647c88f14721554e24 › @aurahelper/core@2.7.0 › unzipper@0.10.14 › fstream@1.0.12 › rimraf@2.7.1 › glob@7.2.3 › minimatch@3.1.2
Overview
minimatch is a minimal matching utility.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) in the AST class, caused by catastrophic backtracking when an input string contains many * characters in a row, followed by an unmatched character.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade minimatch to version 10.2.1 or higher.
References
high severity
- Module: @aurahelper/core
- Introduced through: @aurahelper/core@2.7.0
Detailed paths
-
Introduced through: @aurahelper/languages@JJLongoria/aura-helper-languages#e144e991e6ac75a7f014fa647c88f14721554e24 › @aurahelper/core@2.7.0
GPL-3.0 license
medium severity
- Vulnerable module: inflight
- Introduced through: @aurahelper/core@2.7.0
Detailed paths
-
Introduced through: @aurahelper/languages@JJLongoria/aura-helper-languages#e144e991e6ac75a7f014fa647c88f14721554e24 › @aurahelper/core@2.7.0 › unzipper@0.10.14 › fstream@1.0.12 › rimraf@2.7.1 › glob@7.2.3 › inflight@1.0.6
Overview
Affected versions of this package are vulnerable to Missing Release of Resource after Effective Lifetime via the makeres function due to improperly deleting keys from the reqs object after execution of callbacks. This behavior causes the keys to remain in the reqs object, which leads to resource exhaustion.
Exploiting this vulnerability results in crashing the node process or in the application crash.
Note: This library is not maintained, and currently, there is no fix for this issue. To overcome this vulnerability, several dependent packages have eliminated the use of this library.
To trigger the memory leak, an attacker would need to have the ability to execute or influence the asynchronous operations that use the inflight module within the application. This typically requires access to the internal workings of the server or application, which is not commonly exposed to remote users. Therefore, “Attack vector” is marked as “Local”.
PoC
const inflight = require('inflight');
function testInflight() {
let i = 0;
function scheduleNext() {
let key = `key-${i++}`;
const callback = () => {
};
for (let j = 0; j < 1000000; j++) {
inflight(key, callback);
}
setImmediate(scheduleNext);
}
if (i % 100 === 0) {
console.log(process.memoryUsage());
}
scheduleNext();
}
testInflight();
Remediation
There is no fixed version for inflight.