Find, fix and prevent vulnerabilities in your code.
critical severity
- Vulnerable module: babel-traverse
- Introduced through: istanbul@1.0.0-alpha.2
Detailed paths
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › istanbul@1.0.0-alpha.2 › istanbul-api@1.3.7 › istanbul-lib-instrument@1.10.2 › babel-traverse@6.26.0
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › istanbul@1.0.0-alpha.2 › istanbul-api@1.3.7 › istanbul-lib-instrument@1.10.2 › babel-template@6.26.0 › babel-traverse@6.26.0
Overview
Affected versions of this package are vulnerable to Incomplete List of Disallowed Inputs when using plugins that rely on the path.evaluate() or path.evaluateTruthy() internal Babel methods.
Note:
This is only exploitable if the attacker uses known affected plugins such as @babel/plugin-transform-runtime, @babel/preset-env when using its useBuiltIns option, and any "polyfill provider" plugin that depends on @babel/helper-define-polyfill-provider. No other plugins under the @babel/ namespace are impacted, but third-party plugins might be.
Users that only compile trusted code are not impacted.
Workaround
Users who are unable to upgrade the library can upgrade the affected plugins instead, to avoid triggering the vulnerable code path in affected @babel/traverse.
Remediation
There is no fixed version for babel-traverse.
References
high severity
- Vulnerable module: cross-spawn
- Introduced through: nyc@14.1.1
Detailed paths
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › nyc@14.1.1 › foreground-child@1.5.6 › cross-spawn@4.0.2Remediation: Upgrade to nyc@15.0.0.
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › nyc@14.1.1 › spawn-wrap@1.4.3 › foreground-child@1.5.6 › cross-spawn@4.0.2Remediation: Upgrade to nyc@15.0.0.
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to improper input sanitization. An attacker can increase the CPU usage and crash the program by crafting a very large and well crafted string.
PoC
const { argument } = require('cross-spawn/lib/util/escape');
var str = "";
for (var i = 0; i < 1000000; i++) {
str += "\\";
}
str += "◎";
console.log("start")
argument(str)
console.log("end")
// run `npm install cross-spawn` and `node attack.js`
// then the program will stuck forever with high CPU usage
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade cross-spawn to version 6.0.6, 7.0.5 or higher.
References
high severity
- Vulnerable module: mongoose
- Introduced through: mongoose@5.13.23
Detailed paths
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › mongoose@5.13.23Remediation: Upgrade to mongoose@6.13.5.
Overview
mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.
Affected versions of this package are vulnerable to Improper Neutralization of Special Elements in Data Query Logic due to the improper handling of $where in match queries. An attacker can manipulate search queries to inject malicious code.
Remediation
Upgrade mongoose to version 6.13.5, 7.8.3, 8.8.3 or higher.
References
high severity
- Vulnerable module: mongoose
- Introduced through: mongoose@5.13.23
Detailed paths
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › mongoose@5.13.23Remediation: Upgrade to mongoose@6.13.6.
Overview
mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.
Affected versions of this package are vulnerable to Improper Neutralization of Special Elements in Data Query Logic due to the improper use of a $where filter in conjunction with the populate() match. An attacker can manipulate search queries to retrieve or alter information without proper authorization by injecting malicious input into the query.
Note: This vulnerability derives from an incomplete fix of CVE-2024-53900
Remediation
Upgrade mongoose to version 6.13.6, 7.8.4, 8.9.5 or higher.
References
high severity
- Vulnerable module: mocha
- Introduced through: mocha@6.2.3
Detailed paths
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › mocha@6.2.3Remediation: Upgrade to mocha@10.1.0.
Overview
mocha is a javascript test framework for node.js & the browser.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) in the clean function in utils.js.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade mocha to version 10.1.0 or higher.
References
high severity
- Vulnerable module: semver
- Introduced through: nodemon@2.0.22
Detailed paths
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › nodemon@2.0.22 › simple-update-notifier@1.1.0 › semver@7.0.0Remediation: Upgrade to nodemon@3.0.0.
Overview
semver is a semantic version parser used by npm.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the function new Range, when untrusted user data is provided as a range.
PoC
const semver = require('semver')
const lengths_2 = [2000, 4000, 8000, 16000, 32000, 64000, 128000]
console.log("n[+] Valid range - Test payloads")
for (let i = 0; i =1.2.3' + ' '.repeat(lengths_2[i]) + '<1.3.0';
const start = Date.now()
semver.validRange(value)
// semver.minVersion(value)
// semver.maxSatisfying(["1.2.3"], value)
// semver.minSatisfying(["1.2.3"], value)
// new semver.Range(value, {})
const end = Date.now();
console.log('length=%d, time=%d ms', value.length, end - start);
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade semver to version 5.7.2, 6.3.1, 7.5.2 or higher.
References
medium severity
- Vulnerable module: jsonwebtoken
- Introduced through: jsonwebtoken@8.5.1
Detailed paths
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › jsonwebtoken@8.5.1Remediation: Upgrade to jsonwebtoken@9.0.0.
Overview
jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)
Affected versions of this package are vulnerable to Use of a Broken or Risky Cryptographic Algorithm such that the library can be misconfigured to use legacy, insecure key types for signature verification. For example, DSA keys could be used with the RS256 algorithm.
Exploitability
Users are affected when using an algorithm and a key type other than the combinations mentioned below:
EC: ES256, ES384, ES512
RSA: RS256, RS384, RS512, PS256, PS384, PS512
RSA-PSS: PS256, PS384, PS512
And for Elliptic Curve algorithms:
ES256: prime256v1
ES384: secp384r1
ES512: secp521r1
Workaround
Users who are unable to upgrade to the fixed version can use the allowInvalidAsymmetricKeyTypes option to true in the sign() and verify() functions to continue usage of invalid key type/algorithm combination in 9.0.0 for legacy compatibility.
Remediation
Upgrade jsonwebtoken to version 9.0.0 or higher.
References
medium severity
- Vulnerable module: jsonwebtoken
- Introduced through: jsonwebtoken@8.5.1
Detailed paths
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › jsonwebtoken@8.5.1Remediation: Upgrade to jsonwebtoken@9.0.0.
Overview
jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)
Affected versions of this package are vulnerable to Improper Restriction of Security Token Assignment via the secretOrPublicKey argument due to misconfigurations of the key retrieval function jwt.verify(). Exploiting this vulnerability might result in incorrect verification of forged tokens when tokens signed with an asymmetric public key could be verified with a symmetric HS256 algorithm.
Note:
This vulnerability affects your application if it supports the usage of both symmetric and asymmetric keys in jwt.verify() implementation with the same key retrieval function.
Remediation
Upgrade jsonwebtoken to version 9.0.0 or higher.
References
medium severity
- Vulnerable module: jsonwebtoken
- Introduced through: jsonwebtoken@8.5.1
Detailed paths
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › jsonwebtoken@8.5.1Remediation: Upgrade to jsonwebtoken@9.0.0.
Overview
jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)
Affected versions of this package are vulnerable to Improper Authentication such that the lack of algorithm definition in the jwt.verify() function can lead to signature validation bypass due to defaulting to the none algorithm for signature verification.
Exploitability
Users are affected only if all of the following conditions are true for the jwt.verify() function:
A token with no signature is received.
No algorithms are specified.
A falsy (e.g.,
null,false,undefined) secret or key is passed.
Remediation
Upgrade jsonwebtoken to version 9.0.0 or higher.
References
medium severity
- Vulnerable module: inflight
- Introduced through: nyc@14.1.1, mocha@6.2.3 and others
Detailed paths
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › nyc@14.1.1 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › mocha@6.2.3 › glob@7.1.3 › inflight@1.0.6
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › nyc@14.1.1 › rimraf@2.7.1 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › nyc@14.1.1 › test-exclude@5.2.3 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › istanbul@1.0.0-alpha.2 › istanbul-api@1.3.7 › fileset@2.0.3 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › nyc@14.1.1 › istanbul-lib-source-maps@3.0.6 › rimraf@2.7.1 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › nyc@14.1.1 › spawn-wrap@1.4.3 › rimraf@2.7.1 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › istanbul@1.0.0-alpha.2 › istanbul-api@1.3.7 › istanbul-lib-source-maps@1.2.6 › rimraf@2.7.1 › glob@7.2.3 › inflight@1.0.6
Overview
Affected versions of this package are vulnerable to Missing Release of Resource after Effective Lifetime via the makeres function due to improperly deleting keys from the reqs object after execution of callbacks. This behavior causes the keys to remain in the reqs object, which leads to resource exhaustion.
Exploiting this vulnerability results in crashing the node process or in the application crash.
Note: This library is not maintained, and currently, there is no fix for this issue. To overcome this vulnerability, several dependent packages have eliminated the use of this library.
To trigger the memory leak, an attacker would need to have the ability to execute or influence the asynchronous operations that use the inflight module within the application. This typically requires access to the internal workings of the server or application, which is not commonly exposed to remote users. Therefore, “Attack vector” is marked as “Local”.
PoC
const inflight = require('inflight');
function testInflight() {
let i = 0;
function scheduleNext() {
let key = `key-${i++}`;
const callback = () => {
};
for (let j = 0; j < 1000000; j++) {
inflight(key, callback);
}
setImmediate(scheduleNext);
}
if (i % 100 === 0) {
console.log(process.memoryUsage());
}
scheduleNext();
}
testInflight();
Remediation
There is no fixed version for inflight.
References
medium severity
- Vulnerable module: minimatch
- Introduced through: mocha@6.2.3
Detailed paths
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › mocha@6.2.3 › minimatch@3.0.4Remediation: Upgrade to mocha@9.2.2.
Overview
minimatch is a minimal matching utility.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the braceExpand function in minimatch.js.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade minimatch to version 3.0.5 or higher.
References
medium severity
new
- Vulnerable module: validator
- Introduced through: validator@12.2.0
Detailed paths
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › validator@12.2.0Remediation: Upgrade to validator@13.15.20.
Overview
validator is a library of string validators and sanitizers.
Affected versions of this package are vulnerable to Improper Validation of Specified Type of Input in the isURL() function which does not take into account : as the delimiter in browsers. An attackers can bypass protocol and domain validation by crafting URLs that exploit the discrepancy in protocol parsing that can lead to Cross-Site Scripting and Open Redirect attacks.
Remediation
Upgrade validator to version 13.15.20 or higher.
References
medium severity
- Vulnerable module: validator
- Introduced through: validator@12.2.0
Detailed paths
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › validator@12.2.0Remediation: Upgrade to validator@13.6.0.
Overview
validator is a library of string validators and sanitizers.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isSlug function
PoC
var validator = require("validator")
function build_attack(n) {
var ret = "111"
for (var i = 0; i < n; i++) {
ret += "a"
}
return ret+"_";
}
for(var i = 1; i <= 50000; i++) {
if (i % 10000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
validator.isSlug(attack_str)
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade validator to version 13.6.0 or higher.
References
medium severity
- Vulnerable module: validator
- Introduced through: validator@12.2.0
Detailed paths
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › validator@12.2.0Remediation: Upgrade to validator@13.7.0.
Overview
validator is a library of string validators and sanitizers.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the rtrim function.
PoC
var validator = require("validator")
function build_attack(n) {
var ret = ""
for (var i = 0; i < n; i++) {
ret += " "
}
return ret+"◎";
}
for(var i = 1; i <= 50000; i++) {
if (i % 10000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
validator.rtrim(attack_str)
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade validator to version 13.7.0 or higher.
References
medium severity
- Vulnerable module: validator
- Introduced through: validator@12.2.0
Detailed paths
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › validator@12.2.0Remediation: Upgrade to validator@13.6.0.
Overview
validator is a library of string validators and sanitizers.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isHSL function.
PoC
var validator = require("validator")
function build_attack(n) {
var ret = "hsla(0"
for (var i = 0; i < n; i++) {
ret += " "
}
return ret+"◎";
}
for(var i = 1; i <= 50000; i++) {
if (i % 1000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
validator.isHSL(attack_str)
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade validator to version 13.6.0 or higher.
References
medium severity
- Vulnerable module: validator
- Introduced through: validator@12.2.0
Detailed paths
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › validator@12.2.0Remediation: Upgrade to validator@13.6.0.
Overview
validator is a library of string validators and sanitizers.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isEmail function.
PoC
var validator = require("validator")
function build_attack(n) {
var ret = ""
for (var i = 0; i < n; i++) {
ret += "<"
}
return ret+"";
}
for(var i = 1; i <= 50000; i++) {
if (i % 10000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
validator.isEmail(attack_str,{ allow_display_name: true })
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade validator to version 13.6.0 or higher.
References
medium severity
- Vulnerable module: istanbul-reports
- Introduced through: istanbul@1.0.0-alpha.2 and nyc@14.1.1
Detailed paths
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › istanbul@1.0.0-alpha.2 › istanbul-api@1.3.7 › istanbul-reports@1.5.1
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › nyc@14.1.1 › istanbul-reports@2.2.7Remediation: Upgrade to nyc@15.0.0.
Overview
Affected versions of this package are vulnerable to Reverse Tabnabbing because of no rel attribute in the link to https://istanbul.js.org/.
Remediation
Upgrade istanbul-reports to version 3.1.3 or higher.
References
low severity
- Vulnerable module: debug
- Introduced through: mocha@6.2.3
Detailed paths
-
Introduced through: final_project@CadenetVincent/NodeFinal#127904404ab7957e7cdd4fcf7dcdfe9030320d88 › mocha@6.2.3 › debug@3.2.6Remediation: Upgrade to mocha@8.3.0.
Overview
debug is a small debugging utility.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) in the function useColors via manipulation of the str argument.
The vulnerability can cause a very low impact of about 2 seconds of matching time for data 50k characters long.
Note: CVE-2017-20165 is a duplicate of this vulnerability.
PoC
Use the following regex in the %o formatter.
/\s*\n\s*/
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade debug to version 2.6.9, 3.1.0, 3.2.7, 4.3.1 or higher.