How to use the xgboost.XGBModel function in xgboost

To help you get started, we’ve selected a few xgboost examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github lyft / flytekit / tests / flytekit / common / workflows / sagemaker.py View on Github external
custom_input1,
        custom_input2,
        model,
        custom_output1,
    ):

    with train as reader:
        train_df = reader.read(concat=True)
        dtrain_x = xgb.DMatrix(train_df[:-1])
        dtrain_y = xgb.DMatrix(train_df[-1])
    with validation as reader:
        validation_df = reader.read(concat=True)
        dvalidation_x = xgb.DMatrix(validation_df[:-1])
        dvalidation_y = xgb.DMatrix(validation_df[-1])

    my_model = xgb.XGBModel(**static_hyperparameters)

    my_model.fit(dtrain_x,
                 dtrain_y,
                 eval_set=[(dvalidation_x, dvalidation_y)],
                 eval_metric=sample_eval_function)

    model.set(my_model)
    custom_output1.set(my_model.evals_result())
github apple / turicreate / src / external / xgboost / demo / guide-python / sklearn_evals_result.py View on Github external
import xgboost as xgb
import numpy as np
from sklearn.datasets import make_hastie_10_2

X, y = make_hastie_10_2(n_samples=2000, random_state=42)

# Map labels from {-1, 1} to {0, 1}
labels, y = np.unique(y, return_inverse=True)

X_train, X_test = X[:1600], X[1600:]
y_train, y_test = y[:1600], y[1600:]

param_dist = {'objective':'binary:logistic', 'n_estimators':2}

clf = xgb.XGBModel(**param_dist)
# Or you can use: clf = xgb.XGBClassifier(**param_dist)

clf.fit(X_train, y_train,
        eval_set=[(X_train, y_train), (X_test, y_test)], 
        eval_metric='logloss',
        verbose=True)

# Load evals result by calling the evals_result() function
evals_result = clf.evals_result()

print('Access logloss metric directly from validation_0:')
print(evals_result['validation_0']['logloss'])

print('')
print('Access metrics through a loop:')
for e_name, e_mtrs in evals_result.items():
github bigdong89 / xgboostExtension / xgboostextension / xgbranker.py View on Github external
from xgboost import DMatrix, train
from xgboost import XGBModel
from xgboost.sklearn import _objective_decorator
from xgboostextension.util import _preprare_data_in_groups
from sklearn.utils import check_X_y, check_array


class XGBRanker(XGBModel):
    __doc__ = """Implementation of sklearn API for XGBoost Ranking
           """ + '\n'.join(XGBModel.__doc__.split('\n')[2:])
    
    def __init__(self, max_depth=3, learning_rate=0.1, n_estimators=100, 
                 silent=True, objective="rank:pairwise", booster='gbtree',
                 n_jobs=-1, nthread=None, gamma=0, min_child_weight=1, max_delta_step=0,
                 subsample=1, colsample_bytree=1, colsample_bylevel=1,
                 reg_alpha=0, reg_lambda=1, scale_pos_weight=1,
                 base_score=0.5, random_state=0, seed=None, missing=None, **kwargs): 
        
        super(XGBRanker, self).__init__(max_depth, learning_rate,
                                        n_estimators, silent, objective, booster,
                                        n_jobs, nthread, gamma, min_child_weight, max_delta_step, 
                                        subsample, colsample_bytree, colsample_bylevel,
                                        reg_alpha, reg_lambda, scale_pos_weight,
                                        base_score, random_state, seed, missing)
github Maicius / QQZoneMood / QQZone / src / analysis / TrainData.py View on Github external
def train_with_xgboost(self, x_train, y_train, x_test, y_test):
        xgb_model = xgb.XGBModel()
        params = {
            'booster': ['gblinear'],
            'silent': [1],
            'learning_rate': [x for x in np.round(np.linspace(0.01, 1, 20), 2)],
            'reg_lambda': [lambd for lambd in np.logspace(0, 3, 50)],
            'objective': ['reg:linear']
        }
        print('begin')
        clf = GridSearchCV(xgb_model, params,
                           scoring='neg_mean_squared_error',
                           refit=True)
        clf.fit(x_train, y_train)
        preds = clf.predict(x_test)
        print('test mse:', self.cal_MSE(preds, y_test))
        best_parameters, score, _ = max(clf.grid_scores_, key=lambda x: x[1])
        print('Raw RMSE:', score)
github jeongyoonlee / Kaggler / kaggler / model / automl.py View on Github external
def fit(self, X, y):
        self.model = XGBModel(n_estimators=self.n_best, **self.params)
        self.model.fit(X=X[self.features], y=y, eval_metric='mae', verbose=False)
        return self
github Ashton-Sidhu / aethos / aethos / model_analysis / model_analysis.py View on Github external
def interpret_model(self, show=True):  # pragma: no cover
        """
        Displays a dashboard interpreting your model's performance, behaviour and individual predictions.

        If you have run any other `interpret` functions, they will be included in the dashboard, otherwise all the other intrepretable methods will be included in the dashboard.

        Examples
        --------
        >>> m = model.LogisticRegression()
        >>> m.interpret_model()
        """

        warnings.simplefilter("ignore")

        if isinstance(self.model, xgb.XGBModel):
            return "Using MSFT interpret is currently unsupported with XGBoost."

        if show:
            self.interpret.create_dashboard()
github h2oai / h2o4gpu / src / interface_py / h2o4gpu / util / xgboost_migration.py View on Github external
import tempfile

                class Unpickler(pickle.Unpickler):
                    def find_class(self, module, name):
                        if module.startswith("xgboost"):
                            return pickle.Unpickler.find_class(
                                self, module.replace(
                                    "xgboost", "xgboost_prev"),
                                name)
                        return pickle.Unpickler.find_class(self, module, name)
                f.seek(0)
                model = Unpickler(f).load()
                temp_file = tempfile.NamedTemporaryFile(
                    prefix='xgboost_migration', suffix='.model')
                model.save_model(temp_file.name)
                migrated_model = xgboost.XGBModel()
                migrated_model.load_model(temp_file.name)
                return migrated_model
            raise
github Ashton-Sidhu / aethos / aethos / modelling / model_analysis.py View on Github external
def interpret_model(self, show=True):  # pragma: no cover
        """
        Displays a dashboard interpreting your model's performance, behaviour and individual predictions.

        If you have run any other `interpret` functions, they will be included in the dashboard, otherwise all the other intrepretable methods will be included in the dashboard.

        Examples
        --------
        >>> m = model.LogisticRegression()
        >>> m.interpret_model()
        """

        warnings.simplefilter("ignore")

        if isinstance(self.model, xgb.XGBModel):
            return "Using MSFT interpret is currently unsupported with XGBoost."

        if show:
            self.interpret.create_dashboard()
github Ashton-Sidhu / aethos / aethos / modelling / model_analysis.py View on Github external
def interpret_model(self, show=True):  # pragma: no cover
        """
        Displays a dashboard interpreting your model's performance, behaviour and individual predictions.

        If you have run any other `interpret` functions, they will be included in the dashboard, otherwise all the other intrepretable methods will be included in the dashboard.

        Examples
        --------
        >>> m = model.LogisticRegression()
        >>> m.interpret_model()
        """

        warnings.simplefilter("ignore")

        if isinstance(self.model, xgb.XGBModel):
            return "Using MSFT interpret is currently unsupported with XGBoost."

        if show:
            self.interpret.create_dashboard()
github Ashton-Sidhu / aethos / aethos / modelling / util.py View on Github external
model_kwargs : dict
        Model parameters

    metrics : dict
        Metrics for the model
    """

    mlflow.set_tracking_uri(EXP_DIR)
    mlflow.set_experiment(exp_name)

    with mlflow.start_run(run_name=model_name) as run:

        mlflow.log_params(model_kwargs)
        mlflow.set_tag("name", model_name)

        if isinstance(model, xgb.XGBModel):
            mlflow.xgboost.log_model(model, model_name)
        else:
            mlflow.sklearn.log_model(model, model_name)

        mlflow.log_metrics(metrics)
        mlflow.log_artifacts(os.path.join(IMAGE_DIR, model_name))

        run_id = run.info.run_uuid

        mlflow.end_run()

    return run_id