Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
try:
import onnx
version = onnx.version.version
if version != '1.5.0':
print("onnx==1.5.0 is required")
return
except:
print("onnx is not installed, use \"pip install onnx==1.5.0\".")
return
print("Now translating model from onnx to paddle.")
from x2paddle.decoder.onnx_decoder import ONNXDecoder
model = ONNXDecoder(model_path)
from x2paddle.op_mapper.onnx_op_mapper import ONNXOpMapper
mapper = ONNXOpMapper(model, save_dir)
from x2paddle.optimizer.onnx_optimizer import ONNXOptimizer
optimizer = ONNXOptimizer(mapper)
optimizer.delete_redundance_code()
mapper.save_inference_model(save_dir, params_merge)
def __init__(self, decoder, save_dir):
super(ONNXOpMapper, self).__init__()
self.decoder = decoder
self.graph = decoder.onnx_graph
self.input_shapes = []
self.weights = dict()
self.omit_nodes = list()
self.used_custom_layers = dict()
self.is_inference = False
self.tmp_data_dir = os.path.join(save_dir, 'tmp_data')
self.get_output_shapes()
if not self.op_checker():
raise Exception("Model are not supported yet.")
#mapping op
print("Total nodes: {}".format(
sum([