Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_with_syntax(self):
with self.writer.mode("train") as writer:
scalar = writer.scalar("model/scalar/average")
for i in range(10):
scalar.add_record(i, float(i))
self.writer.save()
self.reader = LogReader(self.dir)
with self.reader.mode("train") as reader:
scalar = reader.scalar("model/scalar/average")
self.assertEqual(scalar.caption(), "train")
def test_check_image(self):
'''
check whether the storage will keep image data consistent
'''
print('check image')
tag = "layer1/check/image1"
image_writer = self.writer.image(tag, 10)
image = Image.open("./dog.jpg")
shape = [image.size[1], image.size[0], 3]
origin_data = np.array(image.getdata()).flatten()
self.writer.save()
self.reader = LogReader(self.dir)
with self.reader.mode("train") as reader:
image_writer.start_sampling()
image_writer.add_sample(shape, list(origin_data))
image_writer.finish_sampling()
# read and check whether the original image will be displayed
image_reader = reader.image(tag)
image_record = image_reader.record(0, 0)
data = image_record.data()
shape = image_record.shape()
PIL_image_shape = (shape[0] * shape[1], shape[2])
data = np.array(data, dtype='uint8').reshape(PIL_image_shape)
print('origin', origin_data.flatten())
print('data', data.flatten())
image_writer = self.writer.image(tag, 10, 1)
num_passes = 10
num_samples = 100
shape = [10, 10, 3]
for pass_ in range(num_passes):
image_writer.start_sampling()
for ins in range(num_samples):
data = np.random.random(shape) * 256
data = np.ndarray.flatten(data)
image_writer.add_sample(shape, list(data))
image_writer.finish_sampling()
self.writer.save()
self.reader = LogReader(self.dir)
with self.reader.mode("train") as reader:
image_reader = reader.image(tag)
self.assertEqual(image_reader.caption(), tag)
self.assertEqual(image_reader.num_records(), num_passes)
image_record = image_reader.record(0, 1)
self.assertTrue(np.equal(image_record.shape(), shape).all())
data = image_record.data()
self.assertEqual(len(data), np.prod(shape))
image_tags = reader.tags("image")
self.assertTrue(image_tags)
self.assertEqual(len(image_tags), 1)
def test_scalar(self):
print('test write')
scalar = self.writer.scalar("model/scalar/min")
# scalar.set_caption("model/scalar/min")
for i in range(10):
scalar.add_record(i, float(i))
print('test read')
self.writer.save()
self.reader = LogReader(self.dir)
with self.reader.mode("train") as reader:
scalar = reader.scalar("model/scalar/min")
self.assertEqual(scalar.caption(), "train")
records = scalar.records()
ids = scalar.ids()
self.assertTrue(
np.equal(records, [float(i) for i in range(10)]).all())
self.assertTrue(np.equal(ids, [float(i) for i in range(10)]).all())
print('records', records)
print('ids', ids)