How to use tsam - 10 common examples

To help you get started, we’ve selected a few tsam examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github FZJ-IEK3-VSA / tsam / test / test_hierarchical.py View on Github external
def test_hierarchical():

    raw = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','examples','testdata.csv'), index_col = 0)

    orig_raw = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','examples','results','testperiods_hierarchical.csv'), index_col = [0,1])

    starttime = time.time()

    aggregation = tsam.TimeSeriesAggregation(raw, noTypicalPeriods = 8, hoursPerPeriod = 24, 
                                            clusterMethod = 'hierarchical', 
                                            extremePeriodMethod = 'new_cluster_center',
                                        addPeakMin = ['T'], addPeakMax = ['Load'] )

    typPeriods = aggregation.createTypicalPeriods()

    print('Clustering took ' + str(time.time() - starttime))


    # sort the typical days in order to avoid error assertion due to different order
    sortedDaysOrig = orig_raw.sum(axis=0,level=0).sort_values('GHI').index
    sortedDaysTest = typPeriods.sum(axis=0,level=0).sort_values('GHI').index

    # rearange their order
    orig = orig_raw[typPeriods.columns].unstack().loc[sortedDaysOrig,:].stack()
    test = typPeriods.unstack().loc[sortedDaysTest,:].stack()
github FZJ-IEK3-VSA / tsam / test / test_cluster_order.py View on Github external
def test_cluster_order():

    raw = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','examples','testdata.csv'), index_col = 0)

    raw_wind = raw.loc[:, 'Wind'].to_frame()

    orig_raw_predefClusterOrder = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','examples','results','testperiods_predefClusterOrder.csv'), index_col = [0,1])

    orig_raw_predefClusterOrderAndClusterCenters = pd.read_csv(os.path.join(os.path.dirname(__file__), '..', 'examples', 'results', 'testperiods_predefClusterOrderAndClusterCenters.csv'),index_col=[0, 1])

    starttime = time.time()

    aggregation_wind = tsam.TimeSeriesAggregation(raw_wind, noTypicalPeriods = 8, hoursPerPeriod = 24,
                                            clusterMethod = 'hierarchical')

    typPeriods_wind = aggregation_wind.createTypicalPeriods()

    aggregation_predefClusterOrder = tsam.TimeSeriesAggregation(raw, noTypicalPeriods=8, hoursPerPeriod=24,
                                                                clusterMethod='hierarchical',
                                                                predefClusterOrder=aggregation_wind.clusterOrder)

    typPeriods_predefClusterOrder = aggregation_predefClusterOrder.createTypicalPeriods()

    aggregation_predefClusterOrderAndClusterCenters = tsam.TimeSeriesAggregation(raw,
                                                                                 noTypicalPeriods=8, hoursPerPeriod=24,
                                                                                 clusterMethod='hierarchical',
                                                                                 predefClusterOrder=aggregation_wind.clusterOrder,
                                                                                 predefClusterCenterIndices=aggregation_wind.clusterCenterIndices)
github FZJ-IEK3-VSA / tsam / test / test_cluster_order.py View on Github external
raw = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','examples','testdata.csv'), index_col = 0)

    raw_wind = raw.loc[:, 'Wind'].to_frame()

    orig_raw_predefClusterOrder = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','examples','results','testperiods_predefClusterOrder.csv'), index_col = [0,1])

    orig_raw_predefClusterOrderAndClusterCenters = pd.read_csv(os.path.join(os.path.dirname(__file__), '..', 'examples', 'results', 'testperiods_predefClusterOrderAndClusterCenters.csv'),index_col=[0, 1])

    starttime = time.time()

    aggregation_wind = tsam.TimeSeriesAggregation(raw_wind, noTypicalPeriods = 8, hoursPerPeriod = 24,
                                            clusterMethod = 'hierarchical')

    typPeriods_wind = aggregation_wind.createTypicalPeriods()

    aggregation_predefClusterOrder = tsam.TimeSeriesAggregation(raw, noTypicalPeriods=8, hoursPerPeriod=24,
                                                                clusterMethod='hierarchical',
                                                                predefClusterOrder=aggregation_wind.clusterOrder)

    typPeriods_predefClusterOrder = aggregation_predefClusterOrder.createTypicalPeriods()

    aggregation_predefClusterOrderAndClusterCenters = tsam.TimeSeriesAggregation(raw,
                                                                                 noTypicalPeriods=8, hoursPerPeriod=24,
                                                                                 clusterMethod='hierarchical',
                                                                                 predefClusterOrder=aggregation_wind.clusterOrder,
                                                                                 predefClusterCenterIndices=aggregation_wind.clusterCenterIndices)

    typPeriods_predefClusterOrderAndClusterCenters = aggregation_predefClusterOrderAndClusterCenters.createTypicalPeriods()

    print('Clustering took ' + str(time.time() - starttime))
github FZJ-IEK3-VSA / tsam / test / test_preprocess.py View on Github external
def test_preprocess():

    raw = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','examples','testdata.csv'), index_col = 0)

    raw_wind = raw.loc[:, 'Wind'].to_frame()

    aggregation_wind = tsam.TimeSeriesAggregation(raw_wind, noTypicalPeriods = 8, hoursPerPeriod = 24,
                                            clusterMethod = 'hierarchical')

    aggregation_wind._preProcessTimeSeries()

    test = aggregation_wind.normalizedPeriodlyProfiles

    orig = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','examples','results','preprocessed_wind.csv'), index_col = [0], header = [0,1])

    np.testing.assert_array_almost_equal(test.values, orig.values,decimal=15)
github FZJ-IEK3-VSA / tsam / test / test_k_medoids.py View on Github external
def test_hierarchical():

    raw = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','examples','testdata.csv'), index_col = 0)

    orig_raw = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','examples','results','testperiods_kmedoids.csv'), index_col = [0,1])

    starttime = time.time()

    aggregation = tsam.TimeSeriesAggregation(raw, noTypicalPeriods = 8, hoursPerPeriod = 24*7, 
                                            clusterMethod = 'k_medoids', )

    typPeriods = aggregation.createTypicalPeriods()

    print('Clustering took ' + str(time.time() - starttime))
    
    # sort the typical days in order to avoid error assertion due to different order
    sortedDaysOrig = orig_raw.sum(axis=0,level=0).sort_values('GHI').index
    sortedDaysTest = typPeriods.sum(axis=0,level=0).sort_values('GHI').index

    # rearange their order
    orig = orig_raw[typPeriods.columns].unstack().loc[sortedDaysOrig,:].stack()
    test = typPeriods.unstack().loc[sortedDaysTest,:].stack()

    np.testing.assert_array_almost_equal(orig.values, test.values,decimal=4)
github FZJ-IEK3-VSA / FINE / FINE / energySystemModel.py View on Github external
# (b) thereby collect the weights which should be considered for each time series as well in a dictionary
        timeSeriesData, weightDict = [], {}
        for mdlName, mdl in self.componentModelingDict.items():
            for compName, comp in mdl.componentsDict.items():
                compTimeSeriesData, compWeightDict = comp.getDataForTimeSeriesAggregation()
                if compTimeSeriesData is not None:
                    timeSeriesData.append(compTimeSeriesData), weightDict.update(compWeightDict)
        timeSeriesData = pd.concat(timeSeriesData, axis=1)
        # Note: Sets index for the time series data. The index is of no further relevance in the energy system model.
        timeSeriesData.index = pd.date_range('2050-01-01 00:30:00', periods=len(self.totalTimeSteps),
                                             freq=(str(self.hoursPerTimeStep) + 'H'), tz='Europe/Berlin')

        # Cluster data with tsam package (the reindex call is here for reproducibility of TimeSeriesAggregation
        # call)
        timeSeriesData = timeSeriesData.reindex(sorted(timeSeriesData.columns), axis=1)
        clusterClass = TimeSeriesAggregation(timeSeries=timeSeriesData, noTypicalPeriods=numberOfTypicalPeriods,
                                             hoursPerPeriod=hoursPerPeriod,
                                             clusterMethod=clusterMethod, sortValues=sortValues, weightDict=weightDict,
                                             **kwargs)

        # Convert the clustered data to a pandas DataFrame and store the respective clustered time series data in the
        # associated components
        data = pd.DataFrame.from_dict(clusterClass.clusterPeriodDict)
        for mdlName, mdl in self.componentModelingDict.items():
            for compName, comp in mdl.componentsDict.items():
                comp.setAggregatedTimeSeriesData(data)

        # Store time series aggregation parameters in class instance
        if storeTSAinstance:
            self.tsaInstance = clusterClass
        self.typicalPeriods = clusterClass.clusterPeriodIdx
        self.timeStepsPerPeriod = list(range(numberOfTimeStepsPerPeriod))
github FZJ-IEK3-VSA / tsam / examples / get_clustercenter_indices.py View on Github external
import tsam.timeseriesaggregation as tsam
import pandas as pd

raw = pd.read_csv('testdata.csv', index_col=0)

aggregation = tsam.TimeSeriesAggregation(raw, noTypicalPeriods = 8,
                                         hoursPerPeriod = 24,
                                         clusterMethod = 'hierarchical')
df = aggregation.createTypicalPeriods()
weights = aggregation.clusterPeriodNoOccur
aggregation.clusterOrder

timesteps = [i for i in range(0, len(df.index.get_level_values('TimeStep')))]

print(aggregation.clusterCenterIndices)

# get all index for every hour that in day of the clusterCenterIndices
days = [d for d in raw.index.dayofyear
        if d in aggregation.clusterCenterIndices]

# select the dates based on this
dates = raw.iloc[days].index
github oemof / oemof-tabular / src / oemof / tabular / datapackage / aggregation.py View on Github external
dfs = {
        r.name: pd.DataFrame(r.read(keyed="True"))
        .set_index("timeindex")
        .astype(float)
        for r in sequence_resources
    }
    sequences = pd.concat(dfs.values(), axis=1)

    if how == "daily":
        hoursPerPeriod = 24
    elif how == "hourly":
        hoursPerPeriod = 1
    elif how == "weekly":
        hoursPerPeriod = 24 * 7

    aggregation = tsam.TimeSeriesAggregation(
        sequences,
        noTypicalPeriods=n,
        rescaleClusterPeriods=False,
        hoursPerPeriod=hoursPerPeriod,
        clusterMethod="hierarchical",
    )

    cluster_weights = {
        aggregation.clusterCenterIndices[n]: w
        for n, w in aggregation.clusterPeriodNoOccur.items()
    }
    if how == "daily":
        temporal = pd.Series(
            {
                d: cluster_weights[d.dayofyear]
                for d in sequences.index
github FZJ-IEK3-VSA / tsam / tsam / timeseriesaggregation.py View on Github external
clusterCenters.append(currentMean)

    if clusterMethod == 'k_means':
        from sklearn.cluster import KMeans
        k_means = KMeans(
            n_clusters=n_clusters,
            max_iter=1000,
            n_init=n_iter,
            tol=1e-4)

        clusterOrder = k_means.fit_predict(candidates)
        clusterCenters = k_means.cluster_centers_

    elif clusterMethod == 'k_medoids':
        from tsam.utils.k_medoids_exact import KMedoids
        k_medoid = KMedoids(n_clusters=n_clusters, solver=solver)

        clusterOrder = k_medoid.fit_predict(candidates)
        clusterCenters = k_medoid.cluster_centers_
    #

    elif clusterMethod == 'hierarchical':
        from sklearn.cluster import AgglomerativeClustering
        clustering = AgglomerativeClustering(
            n_clusters=n_clusters, linkage='ward')

        clusterOrder = clustering.fit_predict(candidates)

        from sklearn.metrics.pairwise import euclidean_distances
        # set cluster center as medoid
        clusterCenters = []
        for clusterNum in np.unique(clusterOrder):
github FZJ-IEK3-VSA / tsam / tsam / utils / segmentation.py View on Github external
# make numpy array with rows containing the segmenatation candidates (time steps)
        # and columns as dimensions of the
        segmentationCandidates = np.asarray(normalizedTypicalPeriods.loc[i,:])
        # produce adjacency matrix: Each time step is only connected to its preceding and succeeding one
        adjacencyMatrix = np.eye(timeStepsPerPeriod, k=1) + np.eye(timeStepsPerPeriod, k=-1)
        # execute clustering of adjacent time steps
        if noSegments==1:
            clusterOrder = np.asarray([0] * len(segmentationCandidates))
        else:
            clustering = AgglomerativeClustering(n_clusters=noSegments, linkage='ward', connectivity=adjacencyMatrix)
            clusterOrder = clustering.fit_predict(segmentationCandidates)
        # determine the indices where the segments change and the number of time steps in each segment
        segNo, indices, segmentNoOccur = np.unique(clusterOrder, return_index=True, return_counts=True)
        clusterOrderUnique = [clusterOrder[index] for index in sorted(indices)]
        # determine the segments' values
        clusterCenters = meanRepresentation(segmentationCandidates, clusterOrder)
        # predict each time step of the period by representing it with the corresponding segment's values
        predictedSegmentedNormalizedTypicalPeriods = pd.DataFrame(
            clusterCenters,
            columns=normalizedTypicalPeriods.columns).reindex(clusterOrder).reset_index(drop=True)
        # represent the period by the segments in the right order only instead of each time step
        segmentedNormalizedTypicalPeriods = pd.DataFrame(
            clusterCenters,
            columns=normalizedTypicalPeriods.columns).reindex(clusterOrderUnique).set_index(np.sort(indices))
        # keep additional information on the lengths of the segments in the right order
        segmentDuration = pd.DataFrame(segmentNoOccur, columns=['Segment Duration']).reindex(clusterOrderUnique).set_index(np.sort(indices))
        # create DataFrame with reduced number of segments together with three indices per period:
        # 1. The segment number
        # 2. The segment duration
        # 3. The index of the original time step, at which the segment starts
        result=segmentedNormalizedTypicalPeriods.set_index([pd.Index(segNo, name='Segment Step'), segmentDuration['Segment Duration'], pd.Index(np.sort(indices), name='Original Start Step')])
        # append predicted and segmented DataFrame to list to create a big DataFrame for all periods

tsam

Time series aggregation module (tsam) to create typical periods

MIT
Latest version published 2 months ago

Package Health Score

67 / 100
Full package analysis

Similar packages