How to use the transformers.XLNetConfig function in transformers

To help you get started, we’ve selected a few transformers examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github huggingface / transformers / tests / test_modeling_xlnet.py View on Github external
def setUp(self):
        self.model_tester = XLNetModelTest.XLNetModelTester(self)
        self.config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37)
github ThilinaRajapakse / simpletransformers / simpletransformers / classification / classification_model.py View on Github external
"""
        Initializes a ClassificationModel model.

        Args:
            model_type: The type of model (bert, xlnet, xlm, roberta, distilbert)
            model_name: Default Transformer model name or path to a directory containing Transformer model file (pytorch_nodel.bin).
            num_labels (optional): The number of labels or classes in the dataset.
            weight (optional): A list of length num_labels containing the weights to assign to each label for loss calculation.
            args (optional): Default args will be used if this parameter is not provided. If provided, it should be a dict containing the args that should be changed in the default args.
            use_cuda (optional): Use GPU if available. Setting to False will force model to use CPU only.
            cuda_device (optional): Specific GPU that should be used. Will use the first available GPU by default.
        """

        MODEL_CLASSES = {
            'bert':       (BertConfig, BertForSequenceClassification, BertTokenizer),
            'xlnet':      (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
            'xlm':        (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
            'roberta':    (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
            'distilbert': (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer),
            'albert':     (AlbertConfig, AlbertForSequenceClassification, AlbertTokenizer),
            'camembert':  (CamembertConfig, CamembertForSequenceClassification, CamembertTokenizer)
        }

        config_class, model_class, tokenizer_class = MODEL_CLASSES[model_type]
        if num_labels:
            self.config = config_class.from_pretrained(model_name, num_labels=num_labels)
            self.num_labels = num_labels
        else:
            self.config = config_class.from_pretrained(model_name)
            self.num_labels = self.config.num_labels
        self.weight = weight
github kaushaltrivedi / fast-bert / fast_bert / data_cls.py View on Github external
RobertaForSequenceClassification,
    RobertaTokenizer,
    CamembertConfig,
    CamembertForSequenceClassification,
    CamembertTokenizer,
    AlbertConfig,
    AlbertForSequenceClassification,
    AlbertTokenizer,
    DistilBertConfig,
    DistilBertForSequenceClassification,
    DistilBertTokenizer,
)

MODEL_CLASSES = {
    "bert": (BertConfig, BertForSequenceClassification, BertTokenizer),
    "xlnet": (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    "xlm": (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
    "roberta": (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
    "albert": (AlbertConfig, AlbertForSequenceClassification, AlbertTokenizer),
    "distilbert": (
        DistilBertConfig,
        DistilBertForSequenceClassification,
        DistilBertTokenizer,
    ),
    "camembert": (
        CamembertConfig,
        CamembertForSequenceClassification,
        CamembertTokenizer,
    ),
}
github ThilinaRajapakse / simpletransformers / simpletransformers / experimental / classification / classification_model.py View on Github external
"""
        Initializes a ClassificationModel model.

        Args:
            model_type: The type of model (bert, xlnet, xlm, roberta, distilbert, albert, camembert)
            model_name: Default Transformer model name or path to a directory containing Transformer model file (pytorch_nodel.bin).
            num_labels (optional): The number of labels or classes in the dataset.
            weight (optional): A list of length num_labels containing the weights to assign to each label for loss calculation.
            sliding_window (optional): Use a sliding window when tokenizing to prevent truncating long sequences. Default = False.
            args (optional): Default args will be used if this parameter is not provided. If provided, it should be a dict containing the args that should be changed in the default args.
            use_cuda (optional): Use GPU if available. Setting to False will force model to use CPU only.
        """

        MODEL_CLASSES = {
            'bert':       (BertConfig, BertForSequenceClassification, BertTokenizer),
            'xlnet':      (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
            'xlm':        (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
            'roberta':    (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
            'distilbert': (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer),
            'albert':     (AlbertConfig, AlbertForSequenceClassification, AlbertTokenizer),
            'camembert':  (CamembertConfig, CamembertForSequenceClassification, CamembertTokenizer)
        }

        config_class, model_class, tokenizer_class = MODEL_CLASSES[model_type]
        if num_labels:
            self.config = config_class.from_pretrained(model_name, num_labels=num_labels)
            self.num_labels = num_labels
        else:
            self.config = config_class.from_pretrained(model_name)
            self.num_labels = self.config.num_labels
        self.tokenizer = tokenizer_class.from_pretrained(model_name)
        self.num_labels = num_labels
github kaushaltrivedi / fast-bert / fast_bert / prediction.py View on Github external
DistilBertTokenizer,
)

import warnings

warnings.filterwarnings("ignore", message="numpy.dtype size changed")
warnings.filterwarnings("ignore", message="numpy.ufunc size changed")

MODEL_CLASSES = {
    "bert": (
        BertConfig,
        (BertForSequenceClassification, BertForMultiLabelSequenceClassification),
        BertTokenizer,
    ),
    "xlnet": (
        XLNetConfig,
        (XLNetForSequenceClassification, XLNetForMultiLabelSequenceClassification),
        XLNetTokenizer,
    ),
    "xlm": (
        XLMConfig,
        (XLMForSequenceClassification, XLMForSequenceClassification),
        XLMTokenizer,
    ),
    "roberta": (
        RobertaConfig,
        (RobertaForSequenceClassification, RobertaForMultiLabelSequenceClassification),
        RobertaTokenizer,
    ),
    "distilbert": (
        DistilBertConfig,
        (
github kaushaltrivedi / fast-bert / fast_bert / data_lm.py View on Github external
XLMForSequenceClassification,
    XLMTokenizer,
    XLNetConfig,
    XLNetForSequenceClassification,
    XLNetTokenizer,
    RobertaConfig,
    RobertaForSequenceClassification,
    RobertaTokenizer,
    DistilBertConfig,
    DistilBertForSequenceClassification,
    DistilBertTokenizer,
)

MODEL_CLASSES = {
    "bert": (BertConfig, BertForSequenceClassification, BertTokenizer),
    "xlnet": (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    "xlm": (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
    "roberta": (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
    "distilbert": (
        DistilBertConfig,
        DistilBertForSequenceClassification,
        DistilBertTokenizer,
    ),
}

# Create text corpus suitable for language model training


def create_corpus(text_list, target_path, logger=None):

    nlp = spacy.load("en_core_web_sm", disable=["tagger", "ner", "textcat"])
github huggingface / transformers / examples / run_tf_squad.py View on Github external
)
import argparse

from seqeval import metrics
from fastprogress import master_bar, progress_bar
from transformers import create_optimizer, GradientAccumulator
from transformers import squad_convert_examples_to_features, SquadV1Processor, SquadV2Processor
import datetime
import math

logger = logging.getLogger(__name__)

ALL_MODELS = sum(
    (
        tuple(conf.pretrained_config_archive_map.keys())
        for conf in (BertConfig, XLNetConfig, XLMConfig, DistilBertConfig)
    ),
    (),
)

MODEL_CLASSES = {
    "bert": (BertConfig, TFBertForQuestionAnswering, BertTokenizer),
    "xlnet": (XLNetConfig, TFXLNetForQuestionAnsweringSimple, XLNetTokenizer),
    "xlm": (XLMConfig, TFXLMForQuestionAnsweringSimple, XLMTokenizer),
    "distilbert": (DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertTokenizer),
}


def train(args, strategy, train_dataset, tokenizer, model, num_train_examples, train_batch_size):
    if args.max_steps > 0:
        num_train_steps = args.max_steps * args.gradient_accumulation_steps
        args.num_train_epochs = 1
github thunlp / Bert2Tag / bertkpe / transformers / convert_pytorch_checkpoint_to_tf2.py View on Github external
None, None,
        None, None, None,
        None, None, None,
        None, None)


import logging
logging.basicConfig(level=logging.INFO)

MODEL_CLASSES = {
    'bert': (BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_MODEL_ARCHIVE_MAP, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP),
    'bert-large-uncased-whole-word-masking-finetuned-squad': (BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_MODEL_ARCHIVE_MAP, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP),
    'bert-large-cased-whole-word-masking-finetuned-squad': (BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_MODEL_ARCHIVE_MAP, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP),
    'bert-base-cased-finetuned-mrpc': (BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_MODEL_ARCHIVE_MAP, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP),
    'gpt2': (GPT2Config, TFGPT2LMHeadModel, GPT2LMHeadModel, GPT2_PRETRAINED_MODEL_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP),
    'xlnet': (XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_MODEL_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP),
    'xlm': (XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_MODEL_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP),
    'transfo-xl': (TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP),
    'openai-gpt': (OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP),
    'roberta': (RobertaConfig, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP),
    'roberta-large-mnli': (RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP),
    'distilbert': (DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP),
    'distilbert-base-uncased-distilled-squad': (DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP),
    'ctrl': (CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_MODEL_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP)
}

def convert_pt_checkpoint_to_tf(model_type, pytorch_checkpoint_path, config_file, tf_dump_path, compare_with_pt_model=False, use_cached_models=True):
    if model_type not in MODEL_CLASSES:
        raise ValueError("Unrecognized model type, should be one of {}.".format(list(MODEL_CLASSES.keys())))

    config_class, model_class, pt_model_class, aws_model_maps, aws_config_map = MODEL_CLASSES[model_type]
github huggingface / transformers / examples / distillation / run_squad_w_distillation.py View on Github external
RawResult, write_predictions,
                         RawResultExtended, write_predictions_extended)

# The follwing import is the official SQuAD evaluation script (2.0).
# You can remove it from the dependencies if you are using this script outside of the library
# We've added it here for automated tests (see examples/test_examples.py file)
from ..utils_squad_evaluate import EVAL_OPTS, main as evaluate_on_squad

logger = logging.getLogger(__name__)

ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) \
                  for conf in (BertConfig, XLNetConfig, XLMConfig)), ())

MODEL_CLASSES = {
    'bert': (BertConfig, BertForQuestionAnswering, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
    'distilbert': (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
}

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

def to_list(tensor):
    return tensor.detach().cpu().tolist()

def train(args, train_dataset, model, tokenizer, teacher=None):
    """ Train the model """