Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_jit(self):
batch_size, channels, height, width = 2, 3, 64, 64
img = torch.ones(batch_size, channels, height, width)
gray = color.RgbToGrayscale()
gray_traced = torch.jit.trace(color.RgbToGrayscale(), img)
assert_allclose(gray(img), gray_traced(img))
def test_jit(self):
batch_size, channels, height, width = 2, 3, 64, 64
img = torch.ones(batch_size, channels, height, width)
gray = color.RgbToGrayscale()
gray_traced = torch.jit.trace(color.RgbToGrayscale(), img)
assert_allclose(gray(img), gray_traced(img))
def test_smoke(self):
height, width, channels = 4, 5, 3
img = np.ones((height, width, channels))
transforms = nn.Sequential(
taug.ToTensor(),
taug.Grayscale(),
)
assert transforms(img).shape == (1, height, width)
def test_rgb_to_tensor(self):
height, width, channels = 4, 5, 3
img = np.ones((height, width, channels))
assert taug.ToTensor()(img).shape == (channels, height, width)
def test_rgb_to_tensor_batch(self):
batch_size, height, width, channels = 2, 4, 5, 3
img = np.ones((batch_size, height, width, channels))
assert taug.ToTensor()(img).shape == \
(batch_size, channels, height, width)
def test_mono_to_tensor(self):
height, width = 4, 5
img = np.ones((height, width))
assert taug.ToTensor()(img).shape == (1, height, width)
def test_smoke(self):
assert str(taug.ToTensor()) == 'ToTensor()'
def test_gray_to_tensor(self):
height, width, channels = 4, 5, 1
img = np.ones((height, width, channels))
assert taug.ToTensor()(img).shape == (1, height, width)
def test_smoke_batch(self):
batch_size, height, width, channels = 2, 4, 5, 3
img = np.ones((batch_size, height, width, channels))
transforms = nn.Sequential(
taug.ToTensor(),
taug.Grayscale(),
)
assert transforms(img).shape == (batch_size, 1, height, width)
def test_smoke_batch(self):
batch_size, height, width, channels = 2, 4, 5, 3
img = np.ones((batch_size, height, width, channels))
transforms = torchvision.transforms.Compose([
taug.ToTensor(),
taug.Grayscale(),
])
assert transforms(img).shape == (batch_size, 1, height, width)