How to use the toolz.curry function in toolz

To help you get started, we’ve selected a few toolz examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github opentargets / data_pipeline / tests / test_common_init.py View on Github external
def partial_class(cls, *args, **kwds):
            '''the way to generate partial from a constructor'''
            class NewCls(cls):
                __init__ = curry(cls.__init__, *args, **kwds)

            return NewCls
github blaze / blaze / blaze / compute / chunks.py View on Github external
def compute_down(expr, data, map=map, **kwargs):
    leaf = expr._leaves()[0]

    (chunk, chunk_expr), (agg, agg_expr) = split(leaf, expr)

    indices = list(range(len(data.data)))

    parts = list(map(curry(compute_chunk, data.data, chunk, chunk_expr),
                     indices))

    if isinstance(parts[0], np.ndarray):
        intermediate = np.concatenate(parts)
    elif isinstance(parts[0], pd.DataFrame):
        intermediate = pd.concat(parts)
    elif isinstance(parts[0], (Iterable, Iterator)):
        intermediate = concat(parts)

    return compute(agg_expr, {agg: intermediate})
github microsoft / seismic-deeplearning / examples / interpretation / notebooks / utilities.py View on Github external
@curry
def _apply_augmentation2D(aug, numpy_array):
    assert len(numpy_array.shape) == 2, "This method only accepts 2D arrays"
    return aug(image=numpy_array)["image"]
github enigmampc / catalyst / catalyst / utils / functional.py View on Github external
@curry
def apply(f, *args, **kwargs):
    """Apply a function to arguments.

    Parameters
    ----------
    f : callable
        The function to call.
    *args, **kwargs
    **kwargs
        Arguments to feed to the callable.

    Returns
    -------
    a : any
        The result of ``f(*args, **kwargs)``
github slavaGanzin / ramda.py / ramda / find_last_index.py View on Github external
@curry
def find_last_index(p, xs):
    """Returns the index of the last element of the list which matches the
predicate, or -1 if no element matches.
Acts as a transducer if a transformer is given in list position"""
    for i in (i for i, x in enumerate(reversed(xs)) if p(x)):
        return len(xs) - i
github nubank / fklearn / src / fklearn / training / transformation.py View on Github external
@curry
@log_learner_time(learner_name='onehot_categorizer')
def onehot_categorizer(df: pd.DataFrame,
                       columns_to_categorize: List[str],
                       hardcode_nans: bool = False,
                       drop_first_column: bool = False,
                       store_mapping: bool = False) -> LearnerReturnType:
    """
    Onehot encoding on categorical columns.
    Encoded columns are removed and substituted by columns named
    `fklearn_feat__col==val`, where `col` is the name of the column
    and `val` is one of the values the feature can assume.

    Parameters
    ----------
    df : pd.DataFrame
        A Pandas' DataFrame that must contain `columns_to_categorize` columns.
github slavaGanzin / ramda.py / ramda / assoc.py View on Github external
@curry
def assoc(key, value, object):
    """Makes a shallow clone of an object, setting or overriding the specified
property with the given value. Note that this copies and flattens prototype
properties onto the new object as well. All non-primitive properties are
copied by reference"""
    o = clone(object)
    o[key] = value
    return o
github slavaGanzin / ramda.py / ramda / curry_n.py View on Github external
@curry
def curry_n(n, f):
    """Returns a curried equivalent of the provided function, with the specified
arity. The curried function has two unusual capabilities. First, its
arguments needn't be provided one at a time. If g is R.curryN(3, f), the
following are equivalent:
g(1)(2)(3)
g(1)(2, 3)
g(1, 2)(3)
g(1, 2, 3)
Secondly, the special placeholder value R.__ may be used to specify
"gaps", allowing partial application of any combination of arguments,
regardless of their positions. If g is as above and _ is R.__,
the following are equivalent:
g(1, 2, 3)
g(_, 2, 3)(1)
g(_, _, 3)(1)(2)
github slavaGanzin / ramda.py / ramda / equals.py View on Github external
@curry
def equals(x, y):
    """Returns true if its arguments are equivalent, false otherwise. Handles
cyclical data structures.
Dispatches symmetrically to the equals methods of both arguments, if
present"""
    return x == y
github slavaGanzin / ramda.py / ramda / intersection.py View on Github external
@curry
def intersection(list1, list2):
    """Combines two lists into a set (i.e. no duplicates) composed of those
elements common to both lists"""
    return list(set(list1).intersection(set(list2)))